[1] Abade A, Ferreiar P A, De B F. Plant diseases recognition on images using convolutional neural networks: A systematic review [J]. Computers and Electronics in Agriculture, 2021, 185: 106125.
[2] 王聃, 柴秀娟. 机器学习在植物病害识别研究中的应用[J]. 中国农机化学报, 2019, 40(9): 171-180.
Wang Dan, Chai Xiujuan. Application of machine learning in plant diseases recognition [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 171-180.
[3] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [J]. Advances in Neural Information Processing Systems, 2012: 1097-1105.
[4] Mohanty S P, Husghes D P, Salathe M. Using deep learning for imagebased plant disease detection [J]. Frontiers in Plant Science, 2016, 7: 1-10.
[5] Tiwari V, Joshi R C, Dutta M K. Dense convolutional neural networks based multiclass plant disease detection and classification using leaf images [J]. Ecological Informatics, 2021, 63: 101289.
[6] Zhong Y, Zhao M. Research on deep learning in apple leaf disease recognition [J]. Computers and Electronics in Agriculture, 2020, 168: 1-6.
[7] 洪惠群, 黄风华. 基于轻量级神经网络的农作物病害识别算法[J]. 沈阳农业大学学报, 2021, 52(2): 239-245.
Hong Huiqun, Huang Fenghua. Recognition algorithm for crop disease based on lightweight neural network [J]. Journal of Shenyang Agricultural University, 2021, 52(2): 239-245.
[8] 孟亮, 郭小燕, 杜佳举, 等. 一种轻量级CNN农作物病害图像识别模型[J]. 江苏农业学报, 2021, 37(5): 1143-1150.〖JP2〗Meng Liang, Guo Xiaoyan, Du Jiaju, et al. A lightweight CNN model for image recognition of crop disease [J].〖JP〗 Jiangsu Journal of Agricultural Sciences, 2021, 37(5): 1143-1150.
[9] Hughes D P, Salathe M. An open access repository of images on plant health to enable the development of mobile disease diagnostics [J]. arXiv preprint arXiv: 1511.08060, 2015.
[10] 马浚诚, 杜克明, 郑飞翔, 等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报, 2016, 34(12): 186-192.
Ma Juncheng, Du Keming, Zheng Feixiang, et al. Disease recognition system for greenhouse cucumbers based on deep convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 34(12): 186-192.
[11] 赵恒谦, 杨屹峰, 刘泽龙, 等. 农作物叶片病害迁移学习分步识别方法[J]. 测绘通报, 2021(7): 34-38.Zhao Hengqian, Yang Yifeng, Liu Zelong, et al. Stepbystep identification method of crop leaf diseases based on transfer learning [J]. Bulletin of Surveying and Mapping, 2021(7): 34-38.
[12] 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171.
Zhang Jianhua, Kong Fantao, Wu Jianzhai, et al. Cotton disease identification model based on improved VGG convolution neural network [J]. Journal of China Agricultural University, 2018, 23(11): 161-171.
[13] 赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191.
Zhao Lixin, Hou Fadong, Lü Zhengchao, et al. Image recognition of cotton leaf diseases and pests based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 184-191.
[14] 王东方, 汪军. 基于迁移学习和残差网络的农作物病害分类[J]. 农业工程学报, 2021, 37(4): 199-207.
Wang Dongfang, Wang Jun. Crop disease classification with transfer learning and residual networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 199-207.
[15] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017: 5999-6009.
[16] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [J]. arXiv preprint arXiv: 2010.11929, 2010.
[17] Ernest. Data repo for the ibean project of the AIR lab [EB/OL].https://github.com/AILabMakerere/ibean/, 2020-01-28.
[18] Atila , Ucar M, Akyol K et al. Plant leaf disease classification using EfficientNet deep learning model [J]. Ecological Informatics, 2021, 61: 101182.
[19] Too E C, Yujian L, Njuki S, et al. A comparative study of finetuning deep learning models for plant disease identification [J]. Computers and Electronics in Agriculture, 2019, 161: 272-279.
|