[1] Song C, Wang D, Bai H, et al. Apple disease recognition based on smallscale data sets [J]. Applied Engineering in Agriculture, 2021, 37(3): 481-490.
[2] Wani J A, Sharma S, Muzamil M, et al. Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges [J]. Archives of Computational Methods in Engineering, 2022, 29(1): 641-677.
[3] Chuanlei Z, Shanwen Z, Jucheng Y, et al. Apple leaf disease identification using genetic algorithm and correlation based feature selection method [J]. International Journal of Agricultural and Biological Engineering, 2017, 10(2): 74-83.
[4] Hasan S, Jahan S, Islam M I. Disease detection of apple leaf with combination of color segmentation and modified DWT [J]. Journal of King Saud UniversityComputer and Information Sciences, 2022, 34(9): 7212-7224.
[5] Chao X, Hu X, Feng J, et al. Construction of apple leaf diseases identification networks based on xception fused by SE module [J]. Applied Sciences, 2021, 11(10): 4614.
[6] Pradhan P, Kumar B, Mohan S. Comparison of various deep convolutional neural network models to discriminate apple leaf diseases using transfer learning [J]. Journal of Plant Diseases and Protection, 2022, 129(6): 1461-1473.
[7] 刘斌, 徐皓玮, 李承泽, 等. 基于快照集成卷积神经网络的苹果叶部病害程度识别[J]. 农业机械学报, 2022, 53(6): 286-294.
Liu Bin, Xu Haowei, Li Chenze, et al. Apple leaf disease identification method based on snapshot ensemble CNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 286-294.
[8] Yu H J, Son C H. Leaf spot attention network for apple leaf disease identification [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 52-53.
[9] Rehman Z U, Khan M A, Ahmed F, et al. Recognizing apple leaf diseases using a novel parallel realtime processing framework based on MASK RCNN and transfer learning: An application for smart agriculture [J]. IET Image Processing, 2021, 15(10): 2157-2168.
[10] 于雪莹, 高继勇, 王首程, 等. 基于生成对抗网络和混合注意力机制残差网络的苹果病害识别[J]. 中国农机化学报, 2022, 43(6): 166-174.
Yu Xueying, Gao Jiyong, Wang Shoucheng, et al. Apple disease recognition based on Wasserstein generative adversarial networks and hybrid attention mechanism residual network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 166-174.
[11] Yan Q, Yang B, Wang W, et al. Apple leaf diseases recognition based on an improved convolutional neural network [J]. Sensors, 2020, 20(12): 3535.
[12] Yu H, Cheng X, Chen C, et al. Apple leaf disease recognition method with improved residual network [J]. Multimedia Tools and Applications, 2022, 81(6): 7759-7782.
[13] Bi C, Wang J,Duan Y, et al. MobileNet based apple leaf diseases identification [J]. Mobile Networks and Applications, 2022: 1-9.
[14] 潘仁勇, 张欣, 陈孝玉龙, 等. 基于DTS-ResNet的苹果叶片病害识别方法[J]. 国外电子测量技术, 2022, 41(9): 142-148.〖JP2〗Pan Renyong, Zhang Xin, Chen Xiaoyulong, et al. Recognition method of apple leaf disease based on DTS-ResNet [J]. Foreign Electronic Measurement Technology, 2022, 41(9): 142-148.
[15] 鲍文霞, 吴刚, 胡根生, 等. 基于改进卷积神经网络的苹果叶部病害识别[J]. 安徽大学学报(自然科学版), 2021, 45(1): 53-59.Bao Wenxia, Wu Gang, Hu Gensheng, et al. Apple leaf disease recognition based on improved convolutional neural network [J]. Journal of Anhui University (Natural Sciences Edition), 2021, 45(1): 53-59.
[16] Ahmad I, Hamid M,Yousaf S, et al. Optimizing pretrained convolutional neural networks for tomato leaf disease detection [J]. Complexity, 2020: 1-6.
[17] 尚文卿, 齐红波. 基于改进Faster R-CNN与迁移学习的农田杂草识别算法[J]. 中国农机化学报, 2022, 43(10): 176-182.
Shang Wenqing, Qi Hongbo. Identification algorithm of field weeds based on improved Faster R-CNN and transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 176-182.
[18] Bansal P, Kumar R, Kumar S. Disease detection in apple leaves using deep convolutional neural network [J]. Agriculture, 2021, 11(7): 617.
[19] 扶兰兰, 黄昊, 王恒, 等. 基于Swin Transformer模型的玉米生长期分类[J]. 农业工程学报, 2022, 38(14): 191-200.
Fu Lanlan, Huang Hao, Wang Heng, et al. Classification of maize growth stages using the Swin Transformer model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(14): 191-200.
[20] Guo Y, Lan Y, Chen X. CST: Convolutional swin transformer for detecting the degree and types of plant diseases [J]. Computers and Electronics in Agriculture, 2022, 202: 107407.
(上接第161页)
[18] 赵学观, 徐丽明, 王应彪, 等. 基于Fluent与高速摄影的玉米种子定向吸附研究[J]. 农业机械学报, 2014, 45(10): 103-109.
Zhao Xueguan, Xu Liming, Wang Yingbiao, et al. Directional adsorption characteristics of corn seed based on fluent and highspeed photography [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 103-109.
[19] 陈进, 边疆, 李耀明, 等. 基于高速摄像系统的精密排种器性能检测试验[J]. 农业工程学报, 2009, 25(9): 90-95.
Chen Jin, Bian Jiang, Li Yaoming, et al. Performance detection experiment of precision seed metering device based on highspeed camera system [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(9): 90-95.
[20] 陈黎卿. 基于双闭环PID模糊算法的玉米精量排种控制系统设计[J]. 农业工程学报, 2018, 34(9): 33-41.
Chen Liqing. Design of control system of maize precision seeding based on double closed loop PID fuzzy algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 33-41.
[21] 黄与霞, 韩丹丹, 韩哲, 等. 振动对勺轮式排种器排种性能的影响试验[J]. 河南大学学报, 2021, 55(5): 896-905.
Huang Yuxia, Han Dandan, Han Zhe, et al. Experiment on the influence of vibration on the seeding performance of the scoopwheel seed meter [J]. Journal of Henan Agricultural University, 2021, 55(5): 896-905.
|