[1]
Coakley S M, Scherm H, Chakraborty S. Climate change and plant disease management [J]. Annual Review of Phytopathology, 1999, 37(37): 399-426.
[2]
Mariko T, Hiroshi E. How and why does tomato accumulate a large amount of GABA in the fruit? [J]. Frontiers in Plant Science, 2015, 6: 612.
[3]
Fuentes A, Lee Y, Hong Y, et al. Characteristics of tomato plant diseases—A study for tomato plant disease identification [C]. ISITC 2016 International Symposium on Information Technology Convergence, 2016.
[4]
王聃, 柴秀娟. 机器学习在植物病害识别研究中的应用[J]. 中国农机化学报, 2019, 40(9): 171-180.
Wang Dan, Chai Xiujuan. Application of machine learning in plant diseases recognition [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 171-180.
[5]
Astuti E, Saragih N E, Sribina N, et al. Dempstershafer method for diagnose diseases on vegetable [C]. 2018 6th International Conference on Cyber and IT Service Management (CITSM), 2018.
[6]
Juan A D, Canizares M C, Moriones E, et al. Tomato yellow leaf curl viruses: ménage à trois between the virus complex, the plant and the whitefly vector [J]. Molecular plant pathology, 2010, 11(4): 441-450.
[7]
Barbedo J G A. A review on the main challenges in automatic plant disease identification based on visible range images [J]. Biosystems Engineering, 2016, 144: 52-60.
[8]
Martinelli F, Scalenghe R, Davino S, et al. Advanced methods of plant disease detection: A review [J]. Agronomy for sustainable development, 2015, 35(1): 1-25.
[9]
马超, 袁涛, 姚鑫锋, 等. 基于HOG+SVM的田间水稻病害图像识别方法研究[J]. 上海农业学报, 2019, 35(5): 131-136.
[10]
刘翠翠, 杨涛, 马京晶, 等. 基于PCASVM的麦冬叶部病害识别系统[J]. 中国农机化学报, 2019, 40(8): 132-136.
Liu Cuicui, Yang Tao, Ma Jingjing, et al. Identification system for leaf diseases of ophiopogon japonicus based on PCASVM [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(8): 132-136.
[11]
刘君, 王学伟. 融合CNN多卷积特征与HOG的番茄叶部病害检测算法[J]. 北方园艺, 2020(4): 147-152.
[12]
王雪, 马卓, 王欣, 等. 基于颜色和形状特征的黄瓜霜霉病自动识别研究[J]. 安徽农业大学学报, 2013, 40(6): 1071-1075.
[13]
郭小清, 范涛杰, 舒欣. 基于图像融合特征的番茄叶部病害的识别[J]. 湖南农业大学学报(自然科学版), 2019, 45(2): 212-217, 224.
[14]
邹永杰, 张永军, 秦永彬, 等. 应用于番茄病虫害检测的HOG特征与LBP特征的结合[J]. 南京师范大学学报(工程技术版), 2019, 19(3): 21-28.
Zou Yongjie, Zhang Yongjun, Qin Yongbin, et al. The combination of HOG features with LBP features applied to tomato disease and pest detection [J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2019, 19(3): 21-28.
[15]
张红涛, 李艺嘉, 谭联, 等. 基于CSSVM的谷子叶片病害图像识别[J]. 浙江农业学报, 2020, 32(2): 274-282.
Zhang Hongtao, Li Yijia, Tan Lian, et al. Image recognition of millet leaf disease based on CSSVM [J]. Acta Agriculturae Zhejiangensis, 2020, 32(2): 274-282.
[16]
中国农业科学院植物包含研究所. 中国农作物病虫害上[M]. 北京: 中国农业出版社, 1979.
[17]
浙江农业大学. 农业植物病理学下[M]. 上海: 上海科学技术出版社, 1980.
[18]
魏野畴, 符崇梅, 张付平. 日光温室蔬菜花卉病虫草害彩色图谱[M]. 兰州: 甘肃科学技术出版社, 2015.
[19]
常亚文, 沈媛, 董长生, 等. 江苏地区三叶斑潜蝇和美洲斑潜蝇的发生危害及种群动态[J]. 应用昆虫学报, 2016, 53(4): 884-891.
Chang Yawen, Shen Yuan, Dong Changsheng, et al. Population dynamics of Liriomyza trifolii and Liriomyza sativae in Jiangsu [J]. Chinese Journal of Applied Entomology, 2016, 53(4): 884-891.
[20]
Stricker M A, Orengo M. Similarity of color images [J]. Proceedings of SPIEThe International Society for Optical Engineering, 1995, 2420: 381-392.
[21]
Greg P, Ramin Z, Justin M. Comparing images using color coherence vectors [C]. Proceedings of the fourth ACM international conference, Multimedia, 1997(2): 65-73.
[22]
Ojala T, Pietikainen M, Maenpaa T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and machine Intelligence, 2002, 24(7): 971-987.
[23]
Nosaka R, Suryanto C H, Fukui K. Rotation invariant cooccurrence among adjacent LBPs [C]. Asian Conference on Computer Vision. Springer, Berlin, Heidelberg, 2012.
[24]
Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on featured distributions [J]. Pattern Recognition, 1996, 29(1): 51-59.
[25]
Youbi Z, Boubchir L, Boukrouche A. Human ear recognition based on local multiscale LBP features with cityblock distance [J]. Multimedia Tools and Applications, 2018.
[26]
Albatal R, Little S. Empirical exploration of extreme SVMRBF parameter values for visual object classification [C]. International Conference on Multimedia Modeling. Springer, Cham, 2014: 299-306.
|