[1] 张丽霞, 卫泽珍, 李金邦, 等. 动物个体识别方法种种[J]. 野生动物学报, 2015, 36(4): 475-478.
Zhang Lixia, Wei Zezhen, Li Jinbang, et al. Differential method for animal individual identification [J]. Chinese Journal of Wildlife, 2015, 36(4): 475-478.
[2] Azmi N, Kamarudin L M, Zakaria A, et al. Radio frequency identification (RFID) range test for animal activity monitoring [C]. 2019 IEEE International Conference on Sensors and Nanotechnology. IEEE, 2019: 1-4.
[3] Li W, Ji Z, Wang L, et al. Automatic individual identification of Holstein dairy cows using tailhead images [J]. Computers and Electronics in Agriculture, 2017, 142: 622-631.
[4] 郭依正, 朱伟兴, 马长华, 等. 基于Isomap和支持向量机算法的俯视群养猪个体识别[J]. 农业工程学报, 2016, 32(3): 182-187.
Guo Yizheng, Zhu Weixing, Ma Changhua, et al. Topview recognition of individual grouphoused pig based on Isomap and SVM [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 182-187.
[5] 顾佳音, 刘辉, 姜广顺. 东北虎(Panthera tigris altaica)个体识别技术研究进展[J]. 野生动物, 2013, 34(4): 229-237.
Gu Jiayin, Liu Hui, Jiang Guangshun. A review of potential techniques for identifying individual Amur tigers (Panthera tigris altaica) [J]. Chinese Journal of Wildlife, 2013, 34(4): 229-237.
[6] 金耀, 何秀文, 万世主, 等. 基于YOLO v3的生猪个体识别方法[J]. 中国农机化学报, 2021, 42(2): 178-183.
Jin Yao, He Xiuwen, Wan Shizhu, et al. Individual pig identification method based on YOLO v3 [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 178-183.
[7] 温长吉, 张笑然, 吴建双, 等. 基于多注意力机制级联LSTM模型的猪脸表情识别[J]. 农业工程学报, 2021, 37(12): 181-190.
Wen Changji, Zhang Xiaoran, Wu Jianshuang, et al. Pig facial expression recognition using multiattention cascaded LSTM model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 181-190.
[8] 谢秋菊, 吴梦茹, 包军, 等. 融合注意力机制的个体猪脸识别[J]. 农业工程学报, 2022, 38(7): 180-188.
Xie Qiuju, Wu Mengru, Bao Jun, et al. Individual pig face recognition combined with attention mechanism [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(7): 180-188.
[9] 董力中, 孟祥宝, 潘明, 等. 基于姿态与时序特征的猪只行为识别方法[J]. 农业工程学报, 2022, 38(5): 148-157.
Dong Lizhong, Meng Xiangbao, Pan Ming, et al. Recognizing pig behavior on posture and temporal features using computer vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(5): 148-157.
[10] Kumar S, Singh S K. Monitoring of pet animal in smart cities using animal biometrics [J]. Future Generation Computer Systems, 2018, 83: 553-563.
[11] Li Z, Ge C, Shen S, et al. Cow individual identification based on convolutional neural network [C]. Proceedings of the 2018 International Conference on Algorithms, Computing and Artificial Intelligence, 2018: 1-5.
[12] Bruslund Haurum J, Karpova A, Pedersen M, et al. Reidentification of zebrafish using metric learning [C]. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, 2020: 1-11.
[13] Cheng X, Zhu J, Zhang N, et al. Detection features as attention (defat): A keypointfree approach to Amur tiger reidentification [C]. 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020: 2231-2235.
[14] Wang L, Ding R, Zhai Y, et al. Giant panda identification [J]. IEEE Transactions on Image Processing, 2021, 30: 2837-2849.
[15] 于雪莹, 高继勇, 王首程, 等. 基于生成对抗网络和混合注意力机制残差网络的苹果病害识别[J]. 中国农机化学报, 2022, 43(6): 166-174.
Yu Xueying, Gao Jiyong, Wang Shoucheng, et al. Apple disease recognition based on Wasserstein generative adversarial networks and hybrid attention mechanism residual network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 166-174.
[16] 张继成, 李德顺. 基于深度残差学习的成熟草莓识别方法[J]. 中国农机化学报, 2022, 43(2): 136-142.
Zhang Jicheng, Li Deshun. Ripe strawberry recognition method based on deep residual learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 136-142.
[17] Zhang T, Zhao Q, Da C, et al. Yak ReID-103: A benchmark for yak reidentification [C]. 2021 IEEE International Joint Conference on Biometrics (IJCB). IEEE, 2021: 1-8.
[18] Sun Y, Zheng L, Yang Y, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline) [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 480-496.
[19] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[20] Li L, Zhang T, Cuo D, et al. Automatic identification of individual yaks in inthewild images using partbased convolutional networks with selfsupervised learning [J]. Expert Systems with Applications, 2023, 216: 119431.
|