[1] 徐增让, 成升魁, 高利伟, 等. 藏北牧区畜粪燃烧与养分流失的生态效应研究[J]. 资源科学, 2015, 37(1): 94-101.Xu Zengrang, Cheng Shengkui, Gao Liwei, et al. Yak dung use as fuel and nutrient loss in the Northern Tibetan Plateau [J]. Resources Science, 2015, 37(1): 94-101.
[2] Liang D F, Niu K C, Zhang S T. Interacting effects of yak dung deposition and litter quality on litter mass los and nitrogen dynamics in Tibetan alpine grassland [J]. Grass Forage Science, 2018, 73(1): 123-131.
[3] 徐增让, 高利伟, 王灵恩, 等. 畜粪能源利用对草地生态系统碳汇的影响[J]. 资源科学, 2012, 34(6): 1062-1069.Xu Zengrang, Gao Liwei, Wang Lingen, et al. Impacts of dung combustion on carbon cycle of grassland ecosystem [J]. Resources Science, 2012, 34(6): 1062-1069.
[4] 杨鹏, 张盛南, 靳忠, 等. 牛粪复混生物质颗粒燃料成型及特性分析[J]. 农业资源与环境学报, 2022, 39(3): 586-593.
Yang Peng, Zhang Shengnan, Jin Zhong, et al. Fuel molding of cattle manure mixed with biomass pellet and its characteristic analysis [J]. Journal of Agricultural Resources and Environment, 2022, 39(3): 586-593.
[5] 王才威, 张守玉, 姚云隆, 等. 生物质成型炭燃烧特性研究[J]. 太阳能学报, 2019, 40(7): 2014-2020.
Wang Caiwei, Zhang Shouyu, Yao Yunlong, et al. Study on combustion characteristics of carbonized biomass briquettes [J]. Acta Energiae Solaris Sinica, 2019, 40(7): 2014-2020.
[6] 范方宇, 郑云武, 黄元波, 等. 果壳生物质燃烧特性与动力学分析[J]. 生物质化学工程, 2018, 52(1): 29-34.
Fan Fangyu, Zheng Yunwu, Huang Yuanbo, et al. Combustion characteristics and kinetics analysis of biomass shells [J]. Biomass Chemical Engineering, 2018, 52(1): 29-34.
[7] 陈国华, 李运泉, 彭浩斌, 等. 木基和竹基生物质燃料燃烧动力学特性研究[J]. 可再生能源, 2015, 33(10): 1535-1540.Chen Guohua, Li Yunquan, Peng Haobin, et al. Kinetics study of the fuel combustion of wood and bamboo biomass [J]. Renewable Energy Resources, 2015, 33(10): 1535-1540.
[8] Mian I, Li X, Dacres O D, et al. Combustion kinetics and mechanism of biomass pellet [J]. Energy, 2020, 205(1): 117909.
[9] Bach Q, Chen, W. A comprehensive study on pyrolysis kinetics of microalgal biomass [J]. Energy Conversion and Management, 2017, 131: 109-116.
[10] Ma P, Yang J, Xing X, et al. Isoconversional kinetics and characteristics of combustion on hydrothermally treated biomass [J]. Renewable Energy, 2017, 114: 1069-1076.
[11] Maia A A D, de Morais L C. Kinetic parameters of red pepper waste as biomass to solid biofuel [J]. Bioresoure Technology, 2016, 204: 157-163.
[12] Ceylan S, Topu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis [J]. Bioresoure Technology, 2014, 156: 182-188.
[13] Huang X, Cao J, Zhao X, et al. Pyrolysis kinetics of soybean straw using thermogravimetric analysis [J]. Fuel, 2016, 169: 93-98.
[14] Tahir M H, Zhao Z, Ren J, et al. Thermokinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential [J]. Biomass Bioenergy, 2019, 122: 193-201.
[15] Zhang Y, Guo Y, Cheng F, et al. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis [J]. Thermochim Acta, 2015, 614: 137-148.
[16] Ma B, Li X, Xu L, et al. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis [J]. Thermochim Acta, 2006, 445: 19-22.
[17] Zhao D, Zhang J, Wang G, et al. Structure characteristics and combustibility of carbonaceous materials from blast furnace flue dust [J]. Applied Thermal Engineering. 2016, 108: 1168-1177.
[18] 李运泉, 彭浩斌, 梁建活. 基于热重分析法的生物质燃烧特性试验分析[J]. 广东化工, 2018, 45(9): 43-44, 17.Li Yunquan, Peng Haobin, Liang Jianhuo. Experimental analysis of biomass combustion characteristics based on thermogravimetric analysis [J]. Guangdong chemical industry, 2018, 45(9): 43-44, 17.
[19] 王芳, 张德俐, 高子翔, 等. 玉米秸秆及其发酵沼渣热解动力学研究[J]. 农业机械学报, 2018, 49(1): 296-304.
Wang Fang, Zhang Deli, Gao Zixiang, et al. Kinetics of pyrolysis of corn stover and its fermentation residue [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 296-304.
[20] Setter C, Costa K L S, Oliveira T J P, et al. The effects of kraft lignin on the physicomechanical quality of briquettes produced with sugarcane bagasse and on the characteristics of the biooil obtained via slow pyrolysis [J]. Fuel Process Technology, 2020, 210: 10.
[21] Mckendry P. Energy production from biomass (partⅠ): Overview of biomass [J]. Bioresoure Technology, 2002, 83: 37-46.
[22] Jayaraman K, Kk M V, Gkalp I. Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach [J]. Energy, 2020, 204: 117905.
[23] 代敏怡, 郭占斌, 赵立欣, 等. 玉米秸秆与市政污泥混合热解特性及动力学分析[J]. 农业工程学报, 2021, 37(2): 242-250.
Dai Minyi, Cuo Zhanbin, Zhao Lixin, et al. Pyrolysis characteristics and kinetic analysis of maize stovers mixed with municipal sludge [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 242-250
[24] 梁爱云, 惠世恩, 徐通模, 等. 几种生物质的TGDTG分析及其燃烧动力学特性研究[J]. 可再生能源, 2008(4): 56-61.Liang Aiyun, Hui Shien, Xu Tongmo, et al. TGDTG analysis and combustion kinetics characteristic study on several kinds of biomass [J]. Renewable Energy Resources, 2008(4): 56-61.
[25] Ceylan S, Topu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis [J]. Bioresoure Technology, 2014, 156: 182-188.
[26] Rahib Y, Sarh B, Bostyn S, et al. Nonisothermal kinetic analysis of the combustion of argan shell biomass [J]. Materials Today: Proceedings,2020, 24(1): 11-16.
[27] Oyedun A O, Tee C Z, Hanson S, et al. Thermogravimetric analysis of the pyrolysis characteristics and kinetics of plastics and biomass blends [J]. Fuel Processing Technology, 2014, 128: 471-481.
|