[1]
申瑞霞, 姚宗路, 赵立欣, 等. 双碳背景下黑龙江省农村生活用能研究[J]. 农业机械学报, 2022, 53(3): 377-383.
Shen Ruixia, Yao Zonglu, Zhao Lixin, et al. Rural living energy in Heilongjiang Province under back ground of carbon peak and neutrality [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 377-383.
[2]
郭昊坤. 我国生物质能应用研究综述及其在农村的应用前景[J]. 中国农机化学报, 2017, 38(3): 77-81.
Guo Haokun. Application review of biomass energy and its application prospect in rural areas in China [J]. Journal of Chinese Agricultural Mechanization, 2017, 38(3): 77-81.
[3]
刘凯凯, 廖培旺, 宫建勋, 等. 棉秆燃料化利用关键技术及设备的研究分析[J]. 中国农机化学报, 2018, 39(1): 78-83.
Liu Kaikai, Liao Peiwang, Gong Jianxun, et al. Research and analysis of the key technologies and equipment with fuel utilization of cotton stalk[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(1): 78-83.
[4]
刘森. 生物质发电厂前期燃料的调研分析[J]. 华电技术, 2013, 35(6): 5-9.
[5]
王晶, 尹凡, 李湘昀, 等. 生物质能产业发展面临的挑战及对策[J]. 中国财政, 2022(2): 59-60.
[6]
曾亮, 狄飞超, 兰欣, 等. 基于CEEMD-CNN-BiGRU-RF模型的短期风电功率预测[J]. 可再生能源, 2022, 40(2): 190-195.
Zeng Liang, Di Feichao, Lan Xin, et al. Shortterm wind power prediction based on CEEMD-CNN-BiGRU-RF model [J]. Renewable Energy Resources, 2022, 40(2): 190-195.
[7]
王英立, 陶帅, 候晓晓, 等. 基于MIV分析的GA-BP神经网络光伏短期发电预测[J]. 太阳能学报, 2020, 41(8): 236-242.
Wang Yingli, Tao Shuai, Hou Xiaoxiao, et al. GA-BP neural network photovoltaic power generation shortterm forecast based on MIV analysis [J]. Acta Energiae Solaris Sinica, 2020, 41(8): 236-242.
[8]
彭曙蓉, 郑国栋, 黄士峻, 等. 基于XGBoost算法融合多特征短期光伏发电量预测[J]. 电测与仪表, 2020, 57(24): 76-83.
Peng Shurong, Zheng Guodong, Huang Shijun, et al. Multiplefeature shortterm photovoltaic generation forecasting based on XGBoost algorithm[J]. Electrical Measurement & Instrumentation, 2020, 57(24): 76-83.
[9]
胡涛, 茅大钧, 程鹏远, 等. 基于火电厂发电量预测的多目标配煤方法[J]. 煤炭转化, 2021, 44(4): 73-80.
Hu Tao, Mao Dajun, Cheng Pengyuan, et al. Multiobjective coal distribution method based on power generation forecast of thermal power plants [J]. Coal Conversion, 2021, 44(4): 73-80.
[10]
李露. 基于神经网络的火电机组性能在线监测研究[D]. 北京: 华北电力大学, 2012.
Li Lu. Study on the online performance monitoring of thermal power unit based on neural network [D]. Beijing: North China Electric Power University, 2012.
[11]
周灵杰, 李博彤, 汪鸿, 等. 基于改进神经网络和能量守恒法的热电联产机组发电量计算[J]. 热力发电, 2020, 49(1): 70-77.
Zhou Lingjie, Li Botong, Wang Hong, et al. Power generation calculation for cogeneration units based on improved neural network and energy conservation method [J]. Thermal Power Generation, 2020, 49(1): 70-77.
[12]
王耀艺, 张金钱, 杨倩文. 基于ACA-BP神经网络瓦斯发电预测的研究[J]. 工业控制计算机, 2020, 33(9): 51-53, 57.
Wang Yaoyi, Zhang Jinqian, Yang Qianwen. Gas power generation prediction based on ant colony algorithm and BP neural network[J]. Industrial Control Computer, 2020, 33(9): 51-53, 57.
[13]
张浩, 王国伟, 苑超, 等. 基于AIGA—BP神经网络的粮食产量预测研究[J]. 中国农机化学报, 2016, 37(6): 205-209.
Zhang Hao, Wang Guowei, Yuan Chao, et al. Research on forecast of grain production based on AIGA—BP neural network[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(6): 205-209.
[14]
柯铭, 刘凯, 赵宏. 基于LSTM的滚动预测风机发电量研究[J]. 计算机应用与软件, 2020, 37(5): 67-71, 76.
Ke Ming, Liu Kai, Zhao Hong. Rolling prediction of wind power generation based on LSTM [J]. Computer Applications and Software, 2020, 37(5): 67-71, 76.
[15]
朱琎琦, 牛晓凡, 肖显斌. 基于改良BP神经网络的生物质锅炉飞灰含碳量预测模型研究[J]. 可再生能源, 2020, 38(2): 150-157.
Zhu Jinqi, Niu Xiaofan, Xiao Xianbin. Prediction models of the carbon content of fly ash in a biomass boiler based on improved BP neural networks [J]. Renewable Energy Resources, 2020, 38(2): 150-157.
[16]
刘莹莹. 我国生物质能利用及其对碳减排的影响[D]. 合肥: 合肥工业大学, 2011.
Liu Yingying. The use of biomass energy in China and its impact on carbon reduction [D]. Hefei: Hefei University of Technology, 2011.
[17]
董达. 生物质炭对水稻生长与稻田甲烷排放效应的影响及其机理研究[D]. 杭州: 浙江大学, 2015.
Dong Da. Effects of biochar amendment on rice growth and methane emission paddy field[D]. Hangzhou: Zhejiang University, 2015.
[18]
李大虎, 李秋科, 王文才, 等. 基于MIV特征选择与PSO-BP神经网络的煤炭发热量预测[J]. 煤炭工程, 2020, 52(11): 154-160.
Li Dahu, Li Qiuke, Wang Wencai, et al. Prediction of coal calorific value based on MIV characteristic variable selection and PSO-BP neural network[J]. Coal Engineering, 2020, 52(11): 154-160.
[19]
王岩, 陈耀然, 韩兆龙, 等. 基于互信息理论与递归神经网络的短期风速预测模型[J]. 上海交通大学学报, 2021, 55(9): 1080-1086.
Wang Yan, Chen Yaoran, Han Zhaolong, et al. Shortterm wind speed forecasting model based on mutual information and recursive neural network [J]. Journal of Shanghai Jiaotong University, 2021, 55(9): 1080-1086.
[20]
李延吉, 李爱民, 李润东, 等. 生物质热解的灰色关联度分析与多元回归模型优化研究[J]. 可再生能源, 2003(5): 12-15.
Li Yanji, Li Aiming, Li Rundong, et al. Studies on grey relation degree analysis and multivariate regression model optimization of biomass pyrolysis [J]. Renewable Energy, 2003(5): 12-15.
|