[1] 梁健, 吕修涛, 冯宇鹏, 等. 我国超级稻发展现状及建议[J]. 中国稻米, 2020, 26(3): 1-4.
Liang Jian, Lü Xiutao, Feng Yupeng, et al. Development status and suggestions of super rice in China [J]. China Rice, 2020, 26(3): 1-4.
[2] 陈博, 敖和军, 曾晓珊. 2009—2018年中国水稻播种面积与产量变化情况分析[J]. 湖南农业大学学报(自然科学版), 2021, 47(5): 495-500.
Chen Bo, Ao Hejun, Zeng Xiaoshan.Analysis of the changes in sown area and yield of rice in China from 2009 to 2018 [J]. Journal of Hunan Agricultural University (Natural Science Edition), 2021, 47(5): 495-500.
[3] 张志勇, 高艳. 中国超级稻追求产量或质量的探讨[J]. 中国农业信息, 2015(12): 8-10.
[4] 张浩博, 吴伊宁, 莫伊凡, 等. 绿色超级稻的研究进展与展望[J]. 华中农业大学学报, 2022, 41(1): 28-39.
Zhang Haobo, Wu Yining, Mo Yifan, et al.Progress and prospects of green super rice [J]. Journal of Huazhong Agricultural University, 2022, 41(1): 28-39.
[5] 王文生, 高用明, 徐建龙, 等. “绿色超级稻”助力亚非国家农业生产的可持续发展[J]. 生命科学, 2018, 30(10): 1090-1099.
Wang Wensheng, Gao Yongming, Xu Jianlong, et al. “Green Super Rice” achieving sustainable development of agricultural production in Asian and African countries [J]. Chinese Bulletin of Life Sciences, 2018, 30(10): 1090-1099.
[6] 李志超, 刘升. 基于ARIMA模型、灰色模型和回归模型的预测比较[J]. 统计与决策, 2019, 35(23): 38-41.
Li Zhichao, Liu Sheng. Prediction comparison based on ARIMA model, Grey model and regression model [J]. Statistics & Decision, 2019, 35(23): 38-41.
[7] 杨聪, 彭巨擘, 伍美珍, 等. 基于ARIMA模型的铟电解槽异常预测研究[J]. 仪表技术, 2022(3): 30-34.
Yang Cong, Peng Jubo, Wu Meizhen, et al. Research on abnormal prediction of indium electrolyzer based on ARIMA model [J]. Instrument Technology, 2022(3): 30-34.
[8] 彭红星, 郑楷航, 黄国彬, 等. 基于BP、LSTM和ARIMA模型的蔬菜价格预测[J]. 中国农机化学报, 2020, 41(4): 193-199.
Peng Hongxing, Zheng Kaihang, Huang Guobin, et al. Vegetable price prediction based on BP, LSTM and ARIMA models [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(4): 193-199.
[9] 张倩. 基于随机森林回归模型的住房租金预测模型的研究[D]. 长春: 东北师范大学, 2019.
Zhang Qian. Research on housing rent prediction model based on random forests regression model [D]. Changchun: Northeast Normal University, 2019.
[10] 张家臣, 邓金根, 谭强, 等. 基于XGBoost的测井曲线重构方法[J]. 石油地球物理勘探, 2022, 57(3): 697-705, 496.
Zhang Jiachen, Deng Jingen, Tan Qiang, et al. Reconstruction of well logs based on XGBoost [J]. Oil Geophysical Prospecting, 2022, 57(3): 697-705, 496.
[11] 杨万里, 段凌凤, 杨万能. 基于深度学习的水稻表型特征提取和穗质量预测研究[J]. 华中农业大学学报, 2021, 40(1): 227-235.
Yang Wanli, Duan Lingfeng, Yang Wanneng. Deep learningbased extraction of rice phenotypic characteristics and prediction of rice panicle weight [J]. Journal of Huazhong Agricultural University, 2021, 40(1): 227-235.
[12] 徐强强, 王旭辉. 指数平滑法在椒江区早稻产量预测中的应用研究[J]. 上海农业科技, 2021(4): 22-24.
[13] 王雨晨. 基于灰色模型的江西水稻产量预测研究[J]. 粮食科技与经济, 2020, 45(4): 29-30.
[14] 胡红艳. 基于GIS和时序算法的水稻产量预测系统研究与应用[D]. 长春: 吉林农业大学, 2016.
Hu Hongyan. Research and application of rice yield prediction system based on GIS and time series algorithm [D]. Changchun: Jilin Agricultural University, 2016.
[15] 艾洪福, 潘贺. BP网络在吉林省农机总动力预测中的应用[J]. 中国农机化学报, 2016, 37(8): 208-211, 216.
Ai Hongfu, Pan He. Application of BP network in prediction of agricultural machinery in Jilin Province [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(8): 208-211, 216.
[16] 夏玉红, 吴大军, 王克明. 农田灌溉系统监测数据校准和融合技术研究[J]. 中国农机化学报, 2020, 41(11): 107-112.
Xia Yuhong, Wu Dajun, Wang Keming. Research on monitoring data calibration and fusion technology of farmland irrigation system [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(11): 107-112.
[17] 阮承治, 赵德安, 陈旭, 等. 双指型农业机器人抓取球形果蔬的控制器设计[J]. 中国农机化学报, 2019, 40(11): 169-175.
Ruan Chengzhi, Zhao Dean, Chen Xu, et al. Controller design for realizing doublefinger agricultural robot to grasp spherical fruits and vegetables [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 169-175.
[18] 柴春花, 黄智英, 李忠, 等. 红枣纹理分级方法的研究[J]. 中国农机化学报, 2016, 37(3): 201-204.
Chai Chunhua, Huang Zhiying, Li Zhong, et al. Research on the texture classification method for red jujubes [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(3): 201-204.
[19] 贾玉昆. 基于决策树的桥梁工程全生命周期造价分析与预测算法研究[J]. 市政技术, 2022, 40(4): 49-54.
Jia Yukun. Study on analysis and prediction algorithm of life cycle cost of bridge engineering based on decision tree [J]. Municipal Engineering Technology, 2022, 40(4): 49-54.
[20] 彭牡林, 肖宏, 肖逸军, 等. 基于决策树的设备预测性维护[J]. 数字通信世界, 2018(8): 68-69.
[21] 胡智辉, 金永兴, 周田瑞, 等. 基于XGBoost的船舶能耗实时预测[J]. 上海海事大学学报, 2022, 43(1): 23-29, 37.
Hu Zhihui, Jin Yongxing, Zhou Tianrui, et al. Realtime prediction of ship energy consumption based on XGBoost [J]. Journal of Shanghai Maritime University, 2022, 43(1): 23-29, 37.
[22] 张艳红, 侯芸, 董元帅. 基于XGboost的省级路面技术状况指标衰变预测[J]. 武汉理工大学学报, 2021, 43(7): 48-54.
Zhang Yanhong, Hou Yun, Dong Yuanshuai. Prediction of decay of provincial level road technical condition index based on XGboost [J]. Journal of Wuhan University of Technology, 2021, 43(7): 48-54.
[23] 赵振国. 基于电讯性能预测的雷达天线组件智能选配方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
Zhao Zhenguo. Research on intelligent matching method for radar antenna components based on telecommunications performance [D]. Harbin: Harbin Institute of Technology, 2021.
[24] 周海波, 梁秋艳, 魏天路, 等. 双级振动精密排种器外槽轮式定量供种装置设计与试验[J]. 农业机械学报, 2016, 47(S1): 57-61, 83.
Zhou Haibo, Liang Qiuyan, Wei Tianlu, et al. Design and experiment of quantitative seed supply device with fluted roller used for doublevibrating precision seed meter [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 57-61, 83.
[25] 张俊. 基于BP神经网络的太湖高铁片区道路工程造价预测研究[D]. 合肥: 安徽建筑大学, 2021.
Zhang Jun. Research on the road engineering cost prediction of Taihu highspeed railway area based on BP neural network [D]. Hefei: Anhui Jianzhu University, 2021.
[26] 刘亚芬. 基于GA的CART决策树改进算法与应用[D]. 广州: 广州大学, 2020.
[27] 冯志. 基于CNN与XGBoost的用户贷款风险预测分析[D]. 湘潭: 湘潭大学, 2020.
Feng Zhi. The prediction and analysis of users loan risk based on CNN and XGBoost [D]. Xiangtan: Xiangtan University, 2020.
[28] 郑学召, 李梦涵, 张嬿妮, 等. 基于随机森林算法的煤自燃温度预测模型研究[J]. 工矿自动化, 2021, 47(5): 58-64.
Zheng Xuezhao, Li Menghan, Zhang Yanni, et al. Research on the prediction model of coal spontaneous combustion temperature based on random forest algorithm [J]. Industry and Mine Automation, 2021, 47(5): 58-64.
(上接第132页)
[13] 甫圣焱, 郑彬, 文超. 不同材料属性的发动机连杆有限元分析[J]. 机械设计, 2021, 38(S2): 151-154.
Fu Shengyan, Zheng Bin, Wen Chao. Finite element analysis of engine connecting rod with different material properties [J]. Journal of Machine Design, 2021, 38(S2): 151-154.
[14] 范东祥, 范纪华, 许侃雯, 等. 不同特性材料连杆的模态分析[J]. 机械工程与自动化, 2017(1): 55-56, 60.
Fan Dongxiang, Fan Jihua, Xu Kanwen, et al. Modal analysis of connecting rod of different characteristic materials [J]. Mechanical Engineering & Automation, 2017(1): 55-56, 60.
[15] 王晓云, 罗丹, 任耿鑫. 基于ANSYS的485Q型连杆动态特性分析[J]. 机械传动, 2011, 35(8): 81-84.
Wang Xiaoyun, Luo Dan, Ren Gengxin. Dynamic characteristics analysis of the connecting rod for 485Q based on ANSYS [J]. Journal of Mechanical Transmission, 2011, 35(8): 81-84.
[16] 郑彬, 鄂靖元. 发动机连杆有限元模态分析及谐响应分析[J]. 机械设计, 2020, 37(S1): 98-101.
Zheng Bin, E Jingyuan. Finite element modal analysis and harmonic response analysis of engine connecting rod [J]. Journal of Machine Design, 2020, 37(S1): 98-101.
[17] 任帅阳, 高爱民, 张勇, 等. 六旋翼植保无人机旋翼折叠机构有限元分析及拓扑优化[J]. 中国农机化学报, 2021, 42(9): 53-58,194.
Ren Shuaiyang, Gao Aimin, Zhang Yong, et al. Finite element analysis and topology optimization of folding mechanism of sixrotor plant protection UAV [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 53-58,194.
[18] 郑彬, 殷国富. 农用自卸车制动蹄有限元分析及优化设计[J]. 中国农机化学报, 2019, 40(1): 85-90.
Zheng Bin, Yin Guofu. Finite element analysis and optimization design for brake shoe of agricultural dump truck [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(1): 85-90.
[19] 朱鑫垚, 赵宇, 李彦. 基于ABAQUS的某型号轿车连杆拓扑优化设计[J]. 农业装备与车辆工程, 2021, 59(11): 149-152.
Zhu Xinyao, Zhao Yu, Li Yan. Optimization design of connecting rod topology based on ABAQUS [J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(11): 149-152.
[20] 廖中源, 王英俊, 王书亭. 基于拓扑优化的变密度点阵结构体优化设计方法[J]. 机械工程学报, 2019, 55(8): 65-72.
Liao Zhongyuan, Wang Yingjun, Wang Shuting. Gradeddensity lattice structure optimization design based on topology optimization [J]. Journal of Mechanical Engineering, 2019, 55(8): 65-72.
|