[1] 梁森苗, 朱婷婷, 张淑文, 等. 杨梅果实发育成熟度与颜色变化规律探究[J]. 浙江农业科学, 2019, 60(6): 879-882.Liang Sengmiao, Zhu Tingting, Zhang Shuwen, et al. Study on the maturity and color change of Chinese bayberry [J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(6): 879-882.
[2] 王立舒, 秦铭霞, 雷洁雅, 等. 基于改进YOLOv4-Tiny的蓝莓成熟度识别方法[J]. 农业工程学报, 2021, 37(18): 170-178.
Wang Lishu, Qin Mingxia, Lei Jieya, et al. Blueberry maturity recognition method based on improved YOLOv4-Tiny [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 170-178.
[3] 刘莫尘, 高甜甜, 马宗旭, 等. 基于MSRCR-YOLOv4-tiny的田间玉米杂草检测模型[J]. 农业机械学报, 2022, 53(2): 246-255, 335.
Liu Mochen, Gao Tiantian, Ma Zongxu, et al. Target detection model of corn weeds in field environment based on MSRCR algorithm and YOLOv4-tiny [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 246-255, 335.
[4] 徐黎明, 吕继东. SUSAN算子和Hough变换在杨梅果实识别中的应用[J]. 中国农机化报, 2015, 36(6): 216-220.
Xu Liming, Lü Jidong. Applications of SUSAN algorithm and Hough transform on recognition of bayberry fruit [J]. Journal of Chinese Agricultural Mechanization, 2015, 36(6): 216-220.
[5] Ghazal S, Qureshi W S, Khan U S, et al. Analysis of visual features and classifiers for fruit classification problem [J]. Computers and Electronics in Agriculture, 2021, 187: 106267.
[6] Khodabakhshian R, Emadi B, Khojastehpour M, et al. Determining quality and maturity of pomegranates using multispectral imaging [J]. Journal of the Saudi Society of Agricultural Sciences, 2017, 16(4): 322-331.
[7] Kang H, Chen C. Fast implementation of realtime fruit detection in apple orchards using deep learning [J]. Computers and Electronics in Agriculture, 2020, 168: 105108.
[8] Akram T, Sharif M, Saba T. Fruits diseases classification: exploiting a hierarchical framework for deep features fusion and selection [J]. Multimedia Tools and Applications, 2020, 79(35): 25763-25783.
[9] Kido S, Hirano Y, Hashimoto N. Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN) [C]. 2018 International Workshop on Advanced Image Technology (IWAIT). IEEE, 2018: 1-4.
[10] Purkait P, Zhao C, Zach C. SPPNet: Deep absolute pose regression with synthetic views [J]. arXiv Preprint arXiv: 1712.03452, 2017.
[11] Girshick R. Fast R-CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[12] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[13] He K, Gkioxari G, Dollár P, et al. Mask R-CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[14] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[15] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector [C]. European Conference on Computer Vision. Springer, Cham, 2016: 21-37.
[16] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[17] Ge Z, Liu S, Wang F, et al. YOLOX: Exceeding YOLO series in 2021 [J]. arXiv Preprint arXiv: 2107. 08430, 2021.
[18] Wang Q, Wu B, Zhu P, et al. Supplementary material for “ECANet: Efficient channel attention for deep convolutional neural networks” [C]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, WA, USA. 2020: 13-19.
[19] Hu J, Shen L, Sun G. Squeezeandexcitation networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[20] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[21] Park J, Woo S, Lee J Y, et al. Bam: Bottleneck attention module [J]. arXiv Preprint arXiv: 1807.06514, 2018.
[22] Cao Y, Xu J, Lin S, et al. GCNet: Nonlocal networks meet squeezeexcitation networks and beyond [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
[23] Qin Z, Zhang P, Wu F, et al. FcaNet: Frequency channel attention networks [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 783-792.
[24] Zhang Y F, Ren W, Zhang Z, et al. Focal and efficient IOU loss for accurate bounding box regression [J]. Neurocomputing, 2022, 506: 146-157.
[25] Ahmed F, Tarlow D, Batra D. Optimizing expected intersectionoverunion with candidateconstrained CRFs [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1850-1858.
[26] Yosinski J, Clune J, Bengio Y, et al. How transferable are features in deep neural networks? [J]. Advances in Neural Information Processing Systems, 2014, 27.
|