[1] Tang Y, Chen M, Wang C, et al. Recognition and localization methods for visionbased fruit picking robots: A review [J]. Frontiers in Plant Science, 2020, 11: 510.
[2] 董坦坦, 姬长英, 周俊, 等. 成熟番茄的图像识别及其位姿的获取研究 [J]. 江西农业学报, 2009, 21(8): 152-155.
Dong Tantan, Ji Changying, Zhou Jun, et al, Recognition of ripe tomato image and obtaining of its pose [J]. Acta Agriculturae Jiangxi, 2009, 21(8): 152-155.
[3] Liu G, Nouaze J C, Touko Mbouembe P L, et al. YOLO-tomato: A robust algorithm for tomato detection based on YOLOv3 [J]. Sensors, 2020, 20(7): 2145.
[4] 刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237.
Liu Fang, Liu Yukun, Lin Sen, et al. Fast recognition method for tomatoes under complex environments based on improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 229-237.
[5] 周云成, 许童羽, 邓寒冰, 等. 基于双卷积链Fast R-CNN的番茄关键器官识别方法[J]. 沈阳农业大学学报, 2018, 49(1): 65-74.
Zhou Yuncheng, Xu Tongyu, Deng Hanbing, et al. Recognition method of tomato key organs based on dual convolution fast R-CNN [J]. Journal of Shenyang Agricultural University, 2018, 49(1): 65-74.
[6] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part I 14. Springer International Publishing, 2016: 21-37.
[7] Redmon J, Farhadi A. Yolov3: An incremental improvement [J]. arXiv Preprint arXiv: 1804.02767, 2018.
[8] Hu J, Shen L, Sun G. Squeezeandexcitation networks [C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[9] Woo S, Park J, Lee J Y, et al.Cbam: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[10] Misra D, Nalamada T, Arasanipalai A U, et al. Rotate to attend: Convolutional triplet attention module [C]. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 3139-3148.
[11] Zhang H, Cisse M, Dauphin Y N, et al. mixup: Beyond empirical risk minimization [J]. arXiv Preprint arXiv:1710.09412, 2017.
[12] DeVries T, Taylor G W. Improved regularization of convolutional neural networks with cutout [J]. arXiv Preprint arXiv:1708.04552, 2017.
[13] Han K, Wang Y, Tian Q, et al. Ghostnet: More features from cheap operations [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[14] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[15] Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
|