English

中国农机化学报

中国农机化学报 ›› 2023, Vol. 44 ›› Issue (10): 231-237.DOI: 10.13733/j.jcam.issn.2095-5553.2023.10.032

• 农业智能化研究 • 上一篇    下一篇

基于改进YOLOv5的自然环境下番茄果实检测

胡奕帆1,赵贤林1,李佩娟1,赵辰雨1,陈光明2   

  1. 1. 南京工程学院,南京市,211167; 2. 南京农业大学,南京市,210031
  • 出版日期:2023-10-15 发布日期:2023-11-09
  • 基金资助:
    江苏省产业前瞻与关键核心技术重点项目(BE2021016—5);南京工程学院引进人才科研启动基金项目(YKJ201940)

Tomato fruit detection in natural environment based on improved YOLOv5

Hu Yifan1, Zhao Xianlin1, Li Peijuan1, Zhao Chenyu1, Chen Guangming2   

  • Online:2023-10-15 Published:2023-11-09

摘要: 为实现番茄果实的快速识别定位,提出一种改进的YOLOv5算法,通过改进数据增强方式,提高模型泛化性;通过替换轻量化主干网络,提高推理速度;增加注意力机制,增强主干网络的特征提取能力;通过修改特赠融合层提高对目标的识别能力并降低计算代价加速计算。试验表明:在自然环境下,所提方法平均准确率为87.5%,成熟番茄准确率为90.1%,比未改进的YOLOv5s模型分别提高4.2%和1.9%。并且在测试集上试验推理检测速度达到101fps。

关键词: 番茄果实检测, YOLOv5, 数据增强, 注意力机制, 轻量化网络

Abstract: In order to realize the fast identification and localization of tomato fruit, an improved YOLOv5 algorithm is proposed, which improves the generalization of the model by improving the data enhancement method, improves the inference speed by replacing the lightweight backbone network, increases the attention mechanism, enhances the feature extraction ability of the backbone network, and accelerates the computation by modifying the special fusion layer to improve the recognition ability of the target and reduce the computational cost. The results show that the average accuracy of the proposed method is 87.5% and the accuracy of mature tomatoes is 90.1%, which is 4.2% and 1.9% higher than that of the unmodified YOLOv5s model, respectively. And on the test set, the experimental inference detection speed has reached 101 frames per second.

Key words: tomato fruit detection, YOLOv5, data enhancement, attention mechanism, lightweight network

中图分类号: