[1]
Kapach K, Barnea E, Mairon R, et al. Computer vision for fruit harvesting robotsstate of the art and challenges ahead [J]. International Journal of Computational Vision & Robotics, 2012, 3(1/2): 4-34.
[2]
周俊, 刘锐, 张高阳. 基于立体视觉的水果采摘机器人系统设计[J]. 农业机械学报, 2010, 41(6): 158-162.
Zhou Jun, Liu Rui, Zhang Gaoyang. Design of fruit harvesting robot based on stereo vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6): 158-162.
[3]
阮承治, 赵德安, 陈旭, 等. 双指型农业机器人抓取球形果蔬的控制器设计[J]. 中国农机化学报, 2019, 40(11): 169-175.
Ruan Chengzhi, Zhao Dean, Chen Xu, et al. Controller design for realizing doublefinger agricultural robot to grasp spherical fruits and vegetables[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 169-175.
[4]
万芳新, 白明昌, 贺志洋, 等. 自然场景下花椒果实的识别[J]. 中国农机化学报, 2016, 37(10): 115-119.
Wan Fangxin, Bai Mingchang, He Zhiyang, et al. Identification of Chinese prickly ash under the natural scenes [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(10): 115-119.
[5]
汪杰, 陈曼龙, 李奎, 等. 基于HSV与形状特征融合的花椒图像识别[J]. 中国农机化学报, 2021, 42(10): 180-185.
Wang Jie, Chen Manlong, Li Kui, et al. Prickly ash image recognition based on HSV and shape feature fusion [J]. Journal of Chinese Agricultural Mechanization, 2021,42(10): 180-185.
[6]
王卓, 王健, 王枭雄, 等. 基于改进YOLO v4的自然环境苹果轻量级检测方法[J]. 农业机械学报, 2022, 53(8): 294-302.
Wang Zhuo, Wang Jian, Wang Xiaoxiong, et al. Lightweight realtime apple detection method based on improved YOLO v4 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 294-302.
[7]
景亮, 王瑞, 刘慧, 等. 基于双目相机与改进YOLOv3算法的果园行人检测与定位[J]. 农业机械学报,2020, 51(9): 34-39, 25.
Jing Liang, Wang Rui, Liu Hui, et al. Orchard pedestrian detection and location based on binocular camera and improved YOLOv3 algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (9): 34-39, 25.
[8]
王丹丹, 宋怀波, 何东健. 苹果采摘机器人视觉系统研究进展[J]. 农业工程学报, 2017, 33(10): 59-69.
Wang Dandan, Song Huaibo, He Dongjian. Research advance on vision system of apple picking robot[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 59-69.
[9]
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[10]
Girshick R. Faster R-CNN [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1440-1448.
[11]
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[12]
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[13]
Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
[14]
杨小冈, 高凡, 卢瑞涛, 等. 基于改进YOLOv5的轻量化航空目标检测方法[J]. 信息与控制, 2022, 51(3): 361-368.
Yang Xiaogang, Gao Fan, Lu Ruitao, et al. Lightweight aerial object detection method based on improved YOLOv5 [J]. Information and Control, 2022, 51(3): 361-368.
[15]
张明路, 郭策, 吕晓玲, 等. 改进的轻量化YOLOv4用于电子元器件检测[J]. 电子测量与仪器学报, 2021, 35(10): 17-23.
Zhang Minglu, Guo Ce, Lü Xiaoling, et al. Improved lightweight YOLOv4 for electronic components detection [J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(10): 17-23.
[16]
张凡, 张鹏超, 王磊, 等. 基于YOLOv5s的轻量化朱鹮检测算法研究[J]. 西安交通大学学报, 2023(1): 1-12.
Zhang Fan, Zhang Pengchao, Wang Lei, et al. Research on lightweight Crested Ibis detection algorithm based on YOLOv5s [J]. Journal of Xian Jiaotong University, 2023(1): 1-12.
[17]
Zhang X, Zhou X Y, Lin M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
[18]
Sandler M, Howard A, Zhu M L, et al. MobileNetv2: inverted residuals and linear bottlenecks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[19]
Rezatohighi H, Tsoi N, Gwak J Y, et al. Generalized Intersection over Union: A metric and a loss for bounding box regression [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[20]
Zheng Z H, Wang P, Liu W, et al. DistanceIoU loss: Faster and better learning for bounding box regression [C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
|