[1]
Sankaran S, Ehsani R. Visiblenear infrared spectroscopy based citrus greening detection: Evaluation of spectral feature extraction techniques [J]. Crop Protection, 2011, 30(11): 1508-1513.
[2]
Mahlein A K. Plant disease detection by imaging sensorsparallels and specific demands for precision agriculture and plant phenotyping [J]. Plant disease, 2016, 100(2): 241-251.
[3]
Moghadam P, Ward D, Goan E, et al. Plant disease detection using hyperspectral imaging [C]. 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2017: 1-8.
[4]
Arnal Barbedo J G. Digital image processing techniques for detecting, quantifying and classifying plant diseases [J]. SpringerPlus, 2013, 2(1): 1-12.
[5]
Elangovan K, Nalini S. Plant disease classification using image segmentation and SVM techniques [J]. International Journal of Computational Intelligence Research, 2017, 13(7): 1821-1828.
[6]
Mohanty S P, Hughes D P, Salathé M. Using deep learning for imagebased plant disease detection [J]. Frontiers in plant science, 2016, 7: 1419.
[7]
Sun J, Tan W, Mao H, et al. Recognition of multiple plant leaf diseases based on improved convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 209-215.
[8]
Durmu瘙塂 H, Güne瘙塂 E O, Krc M. Disease detection on the leaves of the tomato plants by using deep learning [C]. 2017 6th International conference on agrogeoinformatics. IEEE, 2017: 1-5.
[9]
Fuentes A, Yoon S, Kim S C, et al. A robust deeplearningbased detector for realtime tomato plant diseases and pests recognition [J]. Sensors, 2017, 17(9): 2022.
[10]
Zhou G, Zhang W, Chen A, et al. Rapid detection of rice disease based on FCM-KM and faster R-CNN fusion [J]. IEEE access, 2019, 7: 143190-143206.
[11]
Hao W, Zhili S. Improved mosaic: Algorithms for more complex images [C]. Journal of Physics: Conference Series. IOP Publishing, 2020, 1684(1): 012094.
[12]
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv: 2004.10934, 2020.
[13]
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection [C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
[14]
Wang W, Xie E, Song X, et al. Efficient and accurate arbitraryshaped text detection with pixel aggregation network [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 8440-8449.
[15]
Zheng Z, Wang P, Liu W, et al. DistanceIoU loss: Faster and better learning for bounding box regression [C]. Proceedings of the AAAI conference on artificial intelligence. 2020, 34(7): 12993-13000.
[16]
Likas A, Vlassis N, Verbeek J J. The global kmeans clustering algorithm [J]. Pattern recognition, 2003, 36(2): 451-461.
[17]
Liu Y, Wang Y, Wang S, et al. Cbnet: A novel composite backbone network architecture for object detection [C]. Proceedings of the AAAI conference on artificial intelligence. 2020, 34(7): 11653-11660.
[18]
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection [C]. Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988.
[19]
Qin Y, Wen J, Zheng H, et al. Varifocalnet: A chromosome classification approach using deep convolutional networks [J]. IEEE transactions on medical imaging, 2019, 38(11): 2569-2581.
[20]
Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector [C]. European conference on computer vision. Springer, Cham, 2016: 21-37.
[21]
Wang Y, Wang C, Zhang H, et al. Automatic ship detection based on RetinaNet using multiresolution Gaofen-3 imagery [J]. Remote Sensing, 2019, 11(5): 531.
[22]
Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection [C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 10781-10790.
[23]
Redmon J, Farhadi A. Yolov3: An incremental improvement [J]. arXiv preprint arXiv: 1804.02767, 2018.
|