[1]
王玲, 王书茂, 孙超, 等. 基于虚拟仪器技术的联合收获机出厂质量终检系统[J]. 农业机械学报, 2012, 43(Z1): 158-161.
Wang Ling, Wang Shumao, Sun Chao, et al. Endofline quality inspection system for combine harvester based on virtual instrument [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(Z1): 158-161.
[2]
Fan Hongwei, Shao Siji, Zhang Xuhui, et al. Intelligent fault diagnosis of rolling bearing using FCM clustering of EMD-PWVD vibration images [J]. IEEE Access, 2020(8): 145194-145206.
[3]
Li Yongbo, Xu Minqiang, Wei Yu, et al. An improvement EMD method based on the optimized rational Hermite interpolation approach and its application to gear fault diagnosis [J]. Measurement, 2015, 63: 330-345.
[4]
程军圣, 史美丽, 杨宇. 基于LMD与神经网络的滚动轴承故障诊断方法[J]. 振动与冲击, 2010, 29(8): 141-144, 248.
Cheng Junsheng, Shi Meili, Yang Yu. Roller bearing fault diagnosis method based on LMD and neural network [J]. Journal of Vibration and Shock, 2010, 29(8): 141-144, 248.
[5]
金京, 刘畅, 兰雨涛, 等. 基于LMD和MOMEDA的滚动轴承早期故障特征提取研究[J]. 机电工程, 2021, 38(3): 276-285.
Jin Jing, Liu Chang, Lan Yutao, et al. Feature extraction of early faults of rolling bearings based on LMD and MOMEDA [J]. Journal of Mechanical & Electrical Engineering, 2021, 38(3): 276-285.
[6]
Dragomiretskiy K, Zosso D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[7]
Wang Hengdi, Deng Sier, Yang Jianxi, et al. Parameteradaptive VMD method based on BAS optimization algorithm for incipient bearing fault diagnosis [J]. Mathematical Problems in Engineering, 2020: 1-15.
[8]
Zhang Xin, Miao Qiang, Zhang Heng, et al. A parameteradaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery [J]. Mechanical Systems and Signal Processing, 2018, 108: 58-72.
[9]
Li Hongxu, Chang Jianhua, Xu Fan, et al. Efficient lidar signal denoising algorithm using variational mode decomposition combined with a whale optimization algorithm [J]. Remote Sensing, 2019, 11(2): 126.
[10]
Hao Shijie, Ge Fengxiang, Li Yanmiao, et al. Multisensor bearing fault diagnosis based on onedimensional convolutional long shortterm memory networks [J]. Measurement, 2020, 159.
[11]
Lei Jinhao, Liu Chao, Jiang Dongxiang. Fault diagnosis of wind turbine based on long shortterm memory networks [J]. Renewable Energy, 2018, 133.
[12]
胡爱军, 白泽瑞, 赵军. 参数优化VMD结合1.5维谱的滚动轴承复合故障特征分离方法[J]. 振动与冲击, 2020, 39(11): 45-52, 62.
Hu Aijun, Bai Zerui, Zhao Jun. Compound fault features separation method of rolling bearing based on parameter optimization VMD and 1.5 dimension spectrum [J]. Journal of Vibration and Shock, 2020, 39(11): 45-52, 62.
[13]
何勇, 王红, 谷穗. 一种基于遗传算法的VMD参数优化轴承故障诊断新方法[J]. 振动与冲击, 2021, 40(6): 184-189.
He Yong, Wang Hong, Gu Sui. New fault diagnosis approach for bearings based on parameter optimized VMD and genetic algorithm [J]. Journal of Vibration and Shock, 2021, 40(6): 184-189
[14]
Xue Jiankai, Shen Bo. A novel swarm intelligence optimization approach: Sparrow search algorithm [J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[15]
Zhu Yanlong, Yousefi N. Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm [J]. International Journal of Hydrogen Energy, 2021, 46(14).
[16]
汤安迪, 韩统, 徐登武, 等. 基于混沌麻雀搜索算法的无人机航迹规划方法[J]. 计算机应用, 2021(7): 2128-2136.
Tang Andi, Han Tong, Xu Dengwu, et al. Path planning method of unmanned aerial vehicle based on chaos sparrow search algorithm [J]. Journal of Computer Applications, 2021(7): 2128-2136.
[17]
郑义, 岳建海, 焦静, 等. 基于参数优化变分模态分解的滚动轴承故障特征提取方法[J]. 振动与冲击, 2021, 40(1): 86-94.
Zheng Yi, Yue Jianhai, Jiao Jing, et al. Fault feature extraction method of rolling bearing based on parameter optimized VMD [J]. Journal of Vibration and Shock, 2021, 40(1): 86-94.
[18]
方桂花, 杜壮, 高旭. 香农熵改进的变分模态分解与故障特征提取[J]. 机械科学与技术, 2020, 39(7): 1022-1027.
Fang Guihua, Du Zhuang, Gao Xu. Shannon entropy improved variational modal decomposition and fault feature extraction [J]. Mechanical science and technology, 2020, 39(7): 1022-1027.
[19]
Shang Zhiwu, Li Wanxiang, Gao Maosheng, et al. An intelligent fault diagnosis method of multiscale deep feature fusion based on information entropy [J]. Chinese Journal of Mechanical Engineering, 2021(4): 121-136.
[20]
刘忠, 刘振, 邹淑云, 等. 水轮机空化声发射信号的优化VMD特征提取[J]. 动力工程学报, 2021, 41(2): 121-128.
Liu Zhong, Liu Zhen, Zou Shuyun, et al. Feature extraction for cavitation acoustic emission signals of hydraulic turbines based on optimized VMD [J]. Journal of Chinese Society of Power Engineering, 2021, 41(2): 121-128.
|