[1]
Hasan A S M M, Sohel F, Diepeveen D, et al. A survey of deep learning techniques for weed detection from images [J]. Computers and Electronics in Agriculture, 2021, 184(3): 1680-1699.
[2]
姜延军, 岳德成, 李青梅, 等. 全膜双垄沟播玉米田选用除草地膜的适宜田间杂草密度研究[J]. 植物保护, 2018, 44(1): 110-115.
Jiang Yanjun, Yue Decheng, Li Qingmei, et al. Effects of covering weeding film on the suitable weed density in doubleridge maize fields with whole plasticfilm mulching [J]. Plant Protection, 2018, 44(1): 110-115.
[3]
李香菊. 近年我国农田杂草防控中的突出问题与治理对策[J]. 植物保护, 2018, 44(5): 77-84.
Li Xiangju. Main problems and management strategies of weeds in agricultural fields in China in recent years [J]. Plant Protection, 2018, 44(5): 77-84.
[4]
王璨, 武新慧, 张燕青, 等. 基于双注意力语义分割网络的田间苗期玉米识别与分割[J]. 农业工程学报, 2021, 37(9): 211-221.
Wang Can, Wu Xinhui, Zhang Yanqing, et al. Recognition and segmentation of maize seedlings in field based on dual attention semantic segmentation network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 211-221.
[5]
姜红花, 张传银, 张昭, 等. 基于Mask R-CNN的玉米田间杂草检测方法[J]. 农业机械学报, 2020, 51(6): 220-228, 247.
Jiang Honghua, Zhang Chuanyin, Zhang Zhao, et al. Detection method of corn weed based on Mask R-CNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 220-228, 247.
[6]
He Kaiming, Gkioxari G, Dollar P, et al. Mask R-CNN [C]. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017: 2961-2969.
[7]
樊湘鹏, 周建平, 许燕, 等. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34.
Fan Xiangpeng, Zhou Jianping, Xu Yan, et al.Identification and localization of weeds based on optimized Faster R-CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34.
[8]
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [C]. In ICLR, 2015.
[9]
Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [C]. In NIPS, 2015.
[10]
权龙哲, 夏福霖, 姜伟, 等. 基于YOLOv4卷积神经网络的农田苗草识别研究[J]. 东北农业大学学报, 2021, 51(7): 89-98.
Quan Longzhe, Xia Fulin, Jiang Wei, et al. Research on recognition of maize seedlings and weeds in maize mield based on YOLOv4 convolutional neural network [J]. Journal of Northeast Agricultural University, 2021, 51(7): 89-98.
[11]
Bochkovskiy A, Wan C Y g, Liao H. YOLOv4: Optimal speed and accuracy of object detection [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020.
[12]
Liu Wei, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016.
[13]
Redmon J, Farhadi A. YOLOV3: An incremental improvement [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.
[14]
Hu Jie, Shen Li, Sun Gang. Squeezeandexcitation networks [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.
[15]
Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.
[16]
Wang Qilong, Wu Banggu, Zhu Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020.
[17]
Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019.
[18]
Zheng Zhaohui, Wang Ping, Liu Wei, et al. DistanceIoU loss: Faster and better learning for bounding box regression [C]. In AAAI, 2020.
[19]
Zhang Hongyi, Cisse M, Dauphin Y N, et al. mixup: Beyond empirical risk minimization [C]. In ICLR, 2018.
[20]
Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate attention for efficient mobile network design [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021.
[21]
He Jiabo, Erfani S, Ma Xingjun, et al. AlphaIoU: A family of power intersection over union losses for bounding box regression [C]. 35th Conference on Neural Information Processing Systems (NeurIPS), 2021.
|