[1]
袁洪波, 赵努东, 程曼. 基于图像处理的田间杂草识别研究进展与展望[J]. 农业机械学报, 2020, 51(S2): 323-334.
Yuan Hongbo, Zhao Nudong, Cheng Man. Review of weeds recognition based on image processing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 323-334.
[2]
蔡爱平. SAR遥感图像中农田区域识别与检测方法研究[J]. 中国农机化学报, 2020, 41(9): 138-142.
Cai Aiping. Research on identification and detection methods of farmland areas in SAR remote sensing images [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(9): 138-142.
[3]
王茂励, 王浩, 董振振. 基于物联网技术的数字农田信息监测系统研究[J].中国农机化学报, 2019, 40(9): 158-163, 180.
Wang Maoli, Wang Hao, Dong Zhenzhen. Research on digital farmland information monitoring system based on Internet of Things technology [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 158-163, 180.
[4]
Fu L, Lü X, Wu Q, et al. Field weed recognition based on an improved VGG with inception module [J]. International Journal of Agricultural and Environmental Information Systems (IJAEIS), 2020, 11(2): 1-13.
[5]
蒲秀夫, 宁芊, 雷印杰. 基于二值化卷积神经网络的农业病虫害识别[J]. 中国农机化学报, 2020, 41(2): 177-182.
Pu Xiufu, Ning Qian, Lei Yinjie. Identification of agricultural plant diseases based on binarized convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 177-182.
[6]
张学军, 黄爽, 靳伟. 基于改进Faster R-CNN的农田残膜识别方法[J]. 湖南大学学报(自然科学版), 2021, 48(8): 161-168.
Zhang Xuejun, Huang Shuang, Jin Wei. Identification method of agricultural film residue based on improved Faster R-CNN [J]. Journal of Hunan University (Natural Sciences), 2021, 48(8): 161-168.
[7]
Elghany S A, Ramadan M, Alruwaili M, et al. Diagnosis of various skin cancer lesions based on finetuned ResNet50 deep network [J]. Computers Materials and Continua, 2021, 68(1): 117-135.
[8]
邓向武, 马旭, 齐龙. 基于卷积神经网络与迁移学习的稻田苗期杂草识别[J]. 农机化研究, 2021, 43(10): 167-171.
[9]
樊湘鹏, 周建平, 许燕. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34.
Fan Xiangpeng, Zhou Jianping, Xu Yan. Identification and localization of weeds based on optimized Faster R-CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34.
[10]
刘莫尘, 高甜甜, 马宗旭, 等. 融合MSRCR算法和YOLOv4-tiny的田间环境玉米杂草目标检测模型[J/OL]. 农业机械学报: 1-15[2022-10-10]. http://kns.cnki.net/kcms/detail/11.1964.S.20220118.1730.002.html
[11]
李开敬, 许燕, 周建平. 基于Faster R-CNN和数据增强的棉田苗期杂草识别方法[J]. 新疆大学学报(自然科学版), 2021, 38(4): 450-456.
Li Kaijing, Xu Yan, Zhou Jianping. Cotton field seedling weed identification method based on Faster R-CNN and data enhancement [J]. Journal of Xinjiang University (Natural Sciences), 2021, 38(4): 450-456.
[12]
Jiang H, Zhang C, Qiao Y, et al. CNN feature based graph convolutional network for weed and crop recognition in smart farming [J]. Computers and Electronics in Agriculture, 2020, 174: 105450.
[13]
刘宇轩, 孟凡满, 李宏亮. 一种结合全局和局部相似性的小样本分割方法[J]. 北京航空航天大学学报, 2021, 47(3): 665-674.
Liu Yuxuan, Meng Fanman, Li Hongliang. A few shot segmentation method combining global and local similarity [J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 665-674.
[14]
Zang H, Xu R, Cheng L, et al. Residential load forecasting based on LSTM fusing selfattention mechanism with pooling [J]. Energy, 2021, 229: 120682.
[15]
陆雅诺, 陈炳才. 基于注意力机制的小样本啤酒花病虫害识别[J]. 中国农机化学报, 2021, 42(3): 189-196.
Lu Yanuo, Chen Bingcai. Indentation of hops pests and diseases in small samples based on attention mechanisms [J]. Journal of Chinese Agricultural Mechanization, 2021,42(3): 189-196.
[16]
Dong R, Xu D, Zhao J, et al. SigNMS-based Faster R-CNN combining transfer learning for small target detection in VHR optical remote sensing imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8534-8545.
[17]
Farooq A, Hu J, Jia X. Analysis of spectral bands and spatial resolutions for weed classification via deep convolutional neural network [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(2): 183-187.
[18]
孙俊, 何小飞, 谭文军. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报, 2018, 34(11): 159-165.
Sun Jun, He Xiaofei, Tan Wenjun. Recognition of crop seedling and weed recognition based on dilated convolution and global pooling in CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 159-165.
[19]
温德圣, 许燕, 周建平. 自然光照影响下基于深度卷积神经网络和颜色迁移的杂草识别方法[J]. 中国科技论文, 2020, 15(3): 287-292.
Wen Desheng, Xu Yan, Zhou Jianping. Weed identification method based on deep convolutional neural network and color migration under the influence of natural illumination [J]. China Sciencepaper, 2020, 15(3): 287-292.
[20]
Fang F, Li L, Zhu H, et al. Combining Faster R-CNN and modeldriven clustering for elongated object detection [J]. IEEE Transactions on Image Processing, 2019, 29: 2052-2065.
|