[1]
周惠汝, 吴波明. 深度学习在作物病害图像识别方面应用的研究进展[J]. 中国农业科技导报, 2021, 23(5): 61-68.
Zhou Huiru, Wu Boming. Advances in research on deep learning for crop disease image recognition [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 61-68.
[2]
王聃, 柴秀娟. 机器学习在植物病害识别研究中的应用[J]. 中国农机化学报, 2019, 40(9): 171-180.
Wang Dan, Chai Xiujuan. Application of machine learning in plant diseases recognition [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 171-180.
[3]
康飞龙, 李佳, 刘涛, 等. 多类农作物病虫害的图像识别应用技术研究综述[J]. 江苏农业科学, 2020, 48(22): 22-27.
[4]
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313: 504-507.
[5]
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets [J]. Neural computation, 2006, 18(7): 1527-1554.
[6]
Salakhutdinov R, Hinton G E. Deep Boltzmann machines [J]. Journal of Machine Learning Research, 2009, 5(2): 1967-2006.
[7]
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks [J]. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105.
[8]
Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural networks [C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2013: 6645-6649.
[9]
Goodfellow I, PougetAbadie J, Mirza M, et al. Generative adversarial nets [J]. Advances in Neural Information Processing Systems, 2014, 27: 2672-2680.
[10]
Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules [C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 3859-3869.
[11]
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. Computer Science, 2014.
[12]
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[13]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[14]
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[15]
Hughes D P, Salathe M. An open access repository of images on plant health to enable the development of mobile disease diagnostics [J]. Computer Science, 2015.
[16]
任胜男, 孙钰, 张海燕, 等. 基于oneshot学习的小样本植物病害识别[J]. 江苏农业学报, 2019, 35(5): 1061-1067.
Ren Shengnan, Sun Yu, Zhang Haiyan, et al. Plant disease identification for small sample based on oneshot learning [J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(5): 1061-1067.
[17]
Adedoja A, Owolawi P A, Mapayi T. Deep learning based on NASNet for plant disease recognition using leave images [C]. 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD), IEEE, 2019: 1-5.
[18]
Wang G, Sun Y, Wang J. Automatic imagebased plant disease severity estimation using deep learning [J]. Computational Intelligence and Neuroscience, 2017: 2917536.
[19]
Too E C, Yujian L, Njuki S, et al. A comparative study of finetuning deep learning models for plant disease identification [J]. Computers and Electronics in Agriculture, 2019, 161: 272-279.
[20]
WiesnerHanks T, Stewart E L, Kaczmar N, et al. Image set for deep learning: field images of maize annotated with disease symptoms [J]. BMC Research Notes, 2018, 11(1): 1-3.
[21]
Singh D, Jain N, Jain P, et al. PlantDoc: A dataset for visual plant disease detection [M]. Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, 2020: 249-253.
[22]
Barbedo J G A, Koenigkan L V, HalfeldVieira B A, et al. Annotated plant pathology databases for imagebased detection and recognition of diseases [J]. IEEE Latin America Transactions, 2018, 16(6): 1749-1757.
[23]
Prajapati H B, Shah J P, Dabhi V K. Detection and classification of rice plant diseases [J]. Intelligent Decision Technologies, 2017, 11(3): 357-373.
[24]
Thapa R, Snavely N, Belongie S, et al. The plant pathology 2020 challenge dataset to classify foliar disease of apples [J]. arXiv eprints, 2020.
[25]
龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194-201.
Long Mansheng, Ouyang Chunjuan, Liu Huan, et al. Image recognition of Camellia oleifera diseases based on convolutional neural network & transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 194-201.
[26]
Karlekar A, Seal A. SoyNet: Soybean leaf diseases classification [J]. Computers and Electronics in Agriculture, 2020, 172: 105342.
[27]
Liang Q, Xiang S, Hu Y, et al. PD2SE-Net: Computerassisted plant disease diagnosis and severity estimation network [J]. Computers and Electronics in Agriculture, 2019, 157: 518-529.
[28]
杨国亮, 许楠, 康乐乐, 等. 基于参数指数非线性残差神经网络的脐橙病变叶片识别[J]. 浙江农业学报, 2018, 30(6): 1073-1081.
Yang Guoliang, Xu Nan, Kang Lele, et al. Identification of navel orange lesions leaves based on parametric exponential nonlinear residual neural network [J]. Acta Agriculturae Zhejiangensis, 2018, 30(6): 1073-1081.
[29]
Hassan S M, Maji A K, Jasiński M, et al. Identification of plantleaf diseases using CNN and transferlearning approach [J]. Electronics, 2021, 10(12): 1388.
[30]
Mohanty S P, Hughes D P, Salathé M. Using deep learning for imagebased plant disease detection [J]. Frontiers in Plant Science, 2016, 7: 1419.
[31]
Pan S J, Yang Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359.
[32]
许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236.
Xu Jinghui, Shao Mingye, Wang Yichen, et al. Recognition ofcorn leaf spot and rust based on transfer learning with convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 230-236.
[33]
陈桂芬, 赵姗, 曹丽英, 等. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44.
Chen Guifen, Zhao Shan, Cao Liying, et al. Corn plant disease recognition based on migration learning and convolutional neural network [J]. Smart Agriculture, 2019, 1(2): 34-44.
[34]
燕斌, 周鹏, 严利. 基于迁移学习的小样本农作物病害识别[J]. 现代农业科技, 2019(6): 3.
[35]
Zhu J Y, Park T, Isola P, et al. Unpaired imagetoimage translation using cycleconsistent adversarial networks [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2223-2232.
[36]
Zhang H, Xu T, Li H, et al. Stackgan: Text to photorealistic image synthesis with stacked generative adversarial networks [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 5907-5915.
[37]
Karras T, Laine S, Aila T. A stylebased generator architecture for generative adversarial networks [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4401-4410.
[38]
Tian Y, Yang G, Wang Z, et al. Detection of apple lesions in orchards based on deep learning methods of CycleGAN and yolov3-dense [J]. Journal of Sensors, 2019.
[39]
Cap Q H, Uga H, Kagiwada S, et al. LeafGAN: An effective data augmentation method for practical plant disease diagnosis [J]. IEEE Transactions on Automation Science and Engineering, 2020.
[40]
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]. Advances in Neural Information Processing Systems, 2017: 5998-6008.
[41]
Zeng W, Li M. Crop leaf disease recognition based on selfattention convolutional neural network [J]. Computers and Electronics in Agriculture, 2020, 172: 105341.
[42]
Chen S, Zhang K, Zhao Y, et al. An approach for rice bacterial leaf streak disease segmentation and disease severity estimation [J]. Agriculture, 2021, 11(5): 420.
[43]
曹英丽, 江凯伦, 于正鑫, 等. 基于深度卷积神经网络的水稻纹枯病检测识别[J]. 沈阳农业大学学报, 2020, 51(5): 568-575.
Cao Yingli, Jiang Kailun, Yu Zhengxin, et al. Detection and recognition of rice sheath blight based on deep convolutional neural network [J]. Journal of Shenyang Agricultural University, 2020, 51(5): 568-575.
[44]
陈善雄, 伍胜, 于显平, 等. 基于卷积神经网络结合图像处理技术的荞麦病害识别[J]. 农业工程学报, 2021, 37(3): 155-163.
Chen Shanxiong, Wu Sheng, Yu Xianping, et al. Buckwheat disease recognition using convolution neural network combined with image processing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(3): 155-163.
[45]
Saikawa T, Cap Q H, Kagiwada S, et al. AOP: An antioverfitting pretreatment for practical imagebased plant diagnosis [C]. 2019 IEEE International Conference on Big Data (Big Data), IEEE, 2019: 5177-5182.
[46]
刘阗宇, 冯全, 杨森. 基于卷积神经网络的葡萄叶片病害检测方法[J]. 东北农业大学学报, 2018, 49(3): 73-83.
Liu Tianyu, Feng Quan, Yang Sen. Detecting grape diseases based on convolutional neural network [J]. Journal of Northeast Agricultural University, 2018, 49(3): 73-83.
|