[1]
李大林. 我国每年因外来生物入侵经济损失超两千亿元[J]. 广西质量监督导报, 2014(11): 30.
[2]
朱玉玲. 基于深度学习分类方法的山东省外来入侵物种互花米草遥感监测与分析[D]. 青岛: 自然资源部第一海洋研究所, 2020.
[3]
徐国万, 卓荣宗, 曹豪, 等. 互花米草生物量年动态及其与滩涂生境的关系[J]. 植物生态学报, 1989, 13(3): 230-235.
Xu Guowan, Zhuo Rongzong, Cao Hao, et al. Annual changes of biomass of Spartina alterniflora and the relationships between biomass and tidal land habits [J]. Chinese Journal Plant Ecology, 1989, 13(3): 230-235.
[4]
汪秀岩, 周宇鹏, 薛雨霏, 等. 高低纬度种源互花米草种子萌发特性及其对温度的响应[J]. 生态学杂志, 2021, 40(9): 2763-2772.
Wang Xiuyan, Zhou Yupeng, Xue Yufei, et al. Seed germination characteristics of Spartina alterniflora from high and low latitude populations in relation to temperature [J]. Chinese Journal of Ecology, 2021, 40(9): 2763-2772.
[5]
赵欣怡. 基于时序光学和雷达影像的中国海岸带盐沼植被分类研究[D]. 上海: 华东师范大学, 2020.
[6]
解雪峰, 孙晓敏, 吴涛, 等. 互花米草入侵对滨海湿地生态系统的影响研究进展[J]. 应用生态学报, 2020, 31(6): 2119-2128.
Xie Xuefeng, Sun Xiaomin, Wu Tao, et al. Impacts of Spartina alterniflora invasion on coastal wetland ecosystem: Advances and prospects [J]. Chinese Journal of Applied Ecology, 2020, 31(6): 2119-2128.
[7]
王卿, 安树青, 马志军, 等. 入侵植物互花米草——生物学、生态学及管理[J]. 植物分类学报, 2006(5): 559-588.
Wang Qing, An Shuqing, Ma Zhijun, et al. Invasive Spartina alterniflora: Biology, ecology and management [J]. Acta Phytotaxonomica Sinica, 2006(5): 559-588.
[8]
邓必玉, 吴玲巧, 秦旭东, 等. 广西红树林主要外来植物现状及防控对策研究[J]. 林业调查规划, 2020, 45(4): 54-60.
Deng Biyu, Wu Lingqiao, Qin Xudong, et al. Current situation and control measures of exotic plants in mangrove forest of Guangxi [J]. Forest Inventory and Planning, 2020, 45(4): 54-60.
[9]
陶艳成, 潘良浩, 范航清, 等. 广西海岸潮间带互花米草遥感监测[J]. 广西科学, 2017, 24(5): 483-489.
Tao Yancheng, Pan Lianghao, Fan Hangqing, et al. Remote sensing monitoring of Spartina alterniflora in coastal intertidal zone of Guangxi [J]. Guangxi Sciences, 2017, 24(5): 483-489.
[10]
李丽凤, 刘文爱, 陶艳成, 等. 广西山口红树林保护区互花米草扩散动态及其驱动力[J]. 生态学报, 2021, 41(17): 6814-6824.
Li Lifeng, Liu Wenai, Tao Yancheng, et al. Diffusion dynamics and driving forces of Spartina alterniflora in the Guangxi Shankou Mangrove Reserve [J]. Acta Ecologica Sinica, 2021, 41(17): 6814-6824.
[11]
Chen M, Ke Y, Bai J, et al. Monitoring early stage invasion of exotic Spartina alterniflora using deeplearning superresolution techniques based on multisource highresolution satellite imagery: A case study in the Yellow River Delta, China [J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92.
[12]
原忠虎, 王维, 苏宝玲. 基于改进VGGNet模型的外来入侵植物叶片识别方法[J]. 计算机与现代化, 2021(9): 7-11.
Yuan Zhonghu, Wang Wei, Su Baoling. Leaf recognition method of invasive alien plants based on improved VGGNet model [J]. Computer and Modernization, 2021(9): 7-11.
[13]
乔曦, 钱万强, 樊伟, 等. 基于深度学习的野外薇甘菊图像识别[C]. 第五届全国入侵生物学大会——入侵生物与生态安全, 2018.
[14]
安谈洲, 李俐俐, 张瑞杰, 等. 无人机遥感及深度学习在油菜冻害识别中的应用研究[J]. 中国油料作物学报, 2021, 43(3): 479-486.
An Tanzhou, Li Lili, Zhang Ruijie, et al. Application research of unmanned aerial vehicle remote sensing and deep learning in identification of freezing injury in rapeseed [J]. Chinese Journal of Oil Crop Sciences, 2021, 43(3): 479-486.
[15]
Qian W, Huang Y, Liu Q, et al. UAV and a deep convolutional neural network for monitoring invasive alien plants in the wild [J]. Computers and Electronics in Agriculture, 2020, 174.
[16]
刘凯, 龚辉, 曹晶晶, 等. 基于多类型无人机数据的红树林遥感分类对比[J]. 热带地理, 2019, 39(4): 492-501.
Liu Kai, Gong Hui, Cao Jingjing, et al. Comparison of mangrove remote sensing classification based on multitype UAV data [J]. Tropical Geography, 2019, 39(4): 492-501.
[17]
孙中宇, 荆文龙, 乔曦, 等. 基于无人机遥感的盛花期薇甘菊爆发点识别与监测[J]. 热带地理, 2019, 39(4): 482-491.
Sun Zhongyu, Jing Wenlong, Qiao Xi, et al. Identification and monitoring of blooming Mikania micrantha outbreak points based on UAV remote sensing [J]. Tropical Geography, 2019, 39(4): 482-491.
[18]
Wan H W, Wang Q, Jiang D, et al. Monitoring the invasion of Spartina alterniflora using very high resolution unmanned aerial vehicle imagery in Beihai, Guangxi (China) [J]. Scientific World Journal, 2014.
[19]
Mullerova J, Bruna J, Bartalos T, et al. Timing is important: Unmanned aircraft vs. satellite imagery in plant invasion monitoring [J]. Front Plant Sci, 2017, 8: 887.
[20]
Abade A, Ferreira P A, De Barros Vidal F. Plant diseases recognition on images using convolutional neural networks: A systematic review [J]. Computers and Electronics in Agriculture, 2021, 185.
[21]
黄亦其, 刘琪, 赵建晔, 等. 基于深度卷积神经网络的红树林物种无人机监测研究[J]. 中国农机化学报, 2020, 41(2): 141-146, 189.
Huang Yiqi, Liu Qi, Zhao Jianye, et al. Research on unmanned aerial surveillance of mangrove species based on deep convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 141-146, 189.
[22]
Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks [C]. NIPS, 2012.
[23]
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. Computer Science, 2014.
[24]
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [J]. CoRR, 2014, abs/1409.4842.
[25]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [J]. IEEE, 2016.
[26]
Tan M X, Le Q V. EfficientNet: Rethinking model scaling for convolutional neural networks [C]. 36th International Conference on Machine Learning (ICML), 2019.
|