[1]
农业农村部办公厅关于印发《2020年种植业工作要点》的通知[J]. 中华人民共和国农业农村部公报, 2020(2): 61-65.
[2]
商务部关于茧丝绸行业“十四五”发展的指导意见[J]. 北方蚕业, 2021, 42(3): 56-60.
[3]
中国统计年鉴—2021[EB/OL]. http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm, 2021.
[4]
赵帮泰, 叶江红, 郭曦, 等. 国内养蚕机械化设施研究现状、问题及建议[J]. 四川蚕业, 2018, 46(3): 11-4, 12.
[5]
胡迎春, 华南, 牟向伟, 等. 螺旋式桑叶采摘机PLC控制系统的设计与仿真[J]. 机械研究与应用, 2016, 29(3): 56-59.
Hu Yingchun, Hua Nan, Mou Xiangwei, et al. Design and simulation of PLC control system of spiral mulberry leaves plucking machine [J]. Mechanical Research & Application, 2016, 29(3): 56-59.
[6]
杨自栋, 邸雷, 申亚梅, 等. 梳刷式电动树叶采摘收集机[P]. 中国专利: CN108633466A, 2018-10-12.
[7]
李晟. 广西养蚕机械化助力脱贫攻坚[J]. 广西农业机械化, 2020(3): 93-94.
[8]
张富贵, 袁奎, 沈明明, 等. 变量喷雾中果树图像不同分割方法[J]. 中国农机化学报, 2014, 35(5): 81-86.
Zhang Fugui, Yuan Kui, Shen Mingming, et al. Different methods of fruiter image segmentation in variablerate spray [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(5): 81-86.
[9]
贺磊盈, 武传宇, 杜小强. 基于双轮廓同步跟踪的果树枝干提取及三维重建[J]. 农业工程学报, 2014, 30(7): 182-189.
He Leiying, Wu Chuanyu, Du Xiaoqiang. Fruit tree extraction based on simultaneous tracking of two edges for 3D reconstruction [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(7): 182-189.
[10]
Tabb A, Medeiros H. Automatic segmentation of trees in dynamic outdoor environments [J]. Computers in Industry, 2018.
[11]
Amatya S, Karkee M. Integration of visible branch sections and cherry clusters for detecting cherry tree branches in dense foliage canopies[J]. Biosystems Engineering, 2016, 149: 72-81.
[12]
Majeed Y, Zhang J, Zhang X, et al. Apple tree trunk and branch segmentation for automatic trellis training using convolutional neural network based semantic segmentation [J]. IFACPapersOnLine, 2018, 51(17): 75-80.
[13]
Shalal N, Low T, McCarthy C, et al. Orchard mapping and mobile robot localisation using onboard camera and laser scanner data fusionPart A: Tree detection [J]. Computers & Electronics in Agriculture, 2015, 119: 254266.
[14]
Zhang J, He L, Karkee M, et al. Branch detection for apple trees trained in fruiting wall architecture using depth features and RegionsConvolutional Neural Network (R-CNN) [J]. Computers and Electronics in Agriculture, 2018, 155: 386-393.
[15]
乔兆亮, 盖琦. 数字图像的同态滤波增强[C]. 天津市电子工业协会2022年年会论文集, 2022: 100-102.
[16]
张如如, 葛广英, 申哲, 等. 基于HALCON的双目立体视觉工件尺寸测量[J]. 计算机测量与控制, 2018, 26(1): 59-63.
Zhang Ruru, Ge Guangying, Shen Zhe, et al. Measuring dimension of parts of binocular vision based on HALCON [J]. Computer Measurement & Control, 2018, 26(1): 59-63.
[17]
Yao G, Wu X. Halconbased solar panel crack detection [C]. World Conference on Mechanical Engineering and Intelligent Manufacturing, 2019.
[18]
傅隆生, 冯亚利, Elkamil Tola, 等. 基于卷积神经网络的田间多簇猕猴桃图像识别方法[J]. 农业工程学报, 2018, 34(2): 205-211.
Fu Longsheng, Feng Yali, Elkamil Tola, et al. Image recognition method of multicluster kiwifruit in field based on convolutional neural networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 205-211.
[19]
Chen Wen, Ju Chengwei, Li Yanzhou, et al. Sugarcane stem node recognition in field by deep learning combining data expansion [J]. Applied SciencesBasel, 2021, 11(18): 8663.
[20]
黄建, 李施阳, 章秀华, 等. 基于Halcon标定靶的双目相机高精度标定方法[J]. 计算机与数字工程, 2022, 50(4): 762-766.
Huang Jian, Li Shiyang, Zhang Xiuhua, et al. Highprecision calibration method of binocular camera based on halcon calibration target [J]. Computer & Digital Engineering, 2022, 50(4): 762-766.
|