[1] 刘凡, 杨光友, 杨康. 农业采摘机器人柔性机械手研究[J]. 中国农机化学报, 2019, 40(3): 173-178.
Liu Fan, Yang Guangyou, Yang Kang. Research on flexible manipulator for agricultural picking robot [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(3): 173-178.
[2] 初广丽, 张伟, 王延杰, 等. 基 于机器视觉的水果采摘机器人目标识别方法[J]. 中国农机化学报, 2018, 39(2): 83-88.Chu Guangli, Zhang Wei, Wang Yanjie, et al. A method of fruit picking robot target identification based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(2): 83-88.
[3] Koirala A, Walsh K B, Wang Z, et al. Deep learningmethod overview and review of use for fruit detection and yield estimation [J]. Computers and Electronics in Agriculture, 2019, 162: 219-234.
[4] Sa I, Ge Z, Dayoub F, et al. Deepfruits: A fruit detection system using deep neural networks [J]. Sensors, 2016, 16(8): 1222.
[5] Hamuda E, Mc Ginley B, Glavin M, et al. Improved image processingbased crop detection using Kalman filtering and the Hungarian algorithm [J]. Computers and Electronics in Agriculture, 2018, 148: 37-44.
[6] Linker R, Cohen O, Naor A. Determination of the number of green apples in RGB images recorded in orchards [J]. Computers and Electronics in Agriculture, 2012, 81: 45-57.
[7] Liu G, Nouaze J C, Touko Mbouembe P L, et al. YOLOtomato: A robust algorithm for tomato detection based on YOLOv3 [J]. Sensors, 2020, 20(7): 2145.
[8] Girshick R. FastRCNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[9] Ren S, He K, Girshick R, et al. FasterRCNN: Towards realtime object detection with region proposal networks [J]. arXiv preprint arXiv: 2017, 39(6).
[10] Redmon J, Farhadi A. Yolov3: An incremental improvement [J]. arXiv preprint arXiv: 2018. 1804.02767.
[11] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. European conference on computer vision. Springer, Cham, 2016: 21-37.
[12] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv: 2004. 10934, 2020.
[13] Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model [J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
[14] 赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164-173.Zhao Dean, Wu Rendi, Liu Xiaoyang, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 164-173.
[15] 刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237.Liu Fang, Liu Yukun, Lin Sen, et al. Fast recognition method for tomatoes under complex environments based on improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 229-237.
[16] 薛月菊, 黄宁, 涂淑琴, 等. 未成熟芒果的改进YOLOv2识别方法[J]. 农业工程学报, 2018, 34(7): 173-179.Xue Yueju, Huang Ning, Tu Shuqin, et al. Immature mango detection based on improved YOLOv2 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(7): 173-179.
[17] 吕梦棋, 张芮祥, 贾浩, 等. 基于改进ResNet玉米种子分类方法研究[J]. 中国农机化学报, 2021, 42(4): 92-98.
Lü Mengqi, Zhang Ruixiang, Jia Hao, et al. Research on seed classification based on improved ResNet [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 92-98.
[18] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv preprint arXiv: 2014. 1409.1556.
[19] Sengupta A, Ye Y, Wang R, et al. Going deeper in spiking neural networks: VGG and residual architectures [J]. Frontiers in Neuroscience, 2019, 13: 95.
[20] Wen L, Li X, Gao L. A transfer convolutional neural network for fault diagnosis based on ResNet-50 [J]. Neural Computing and Applications, 2020, 32(10): 6111-6124.
[21] Szegedy C, Ioffe S, Vanhoucke V, et al. Inceptionv4, inceptionresnet and the impact of residual connections on learning [C]. Thirtyfirst AAAI Conference on Artificial Intelligence. 2017.
[22] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[23] Wu Z, Shen C, Hengel A V D. Wider or deeper: Revisiting the resnet model for visual recognition [J]. Pattern Recognition, 2019, 90: 119-133.
|