[1]
刘晓洋, 赵德安, 贾伟宽, 等. 基于超像素特征的苹果采摘机器人果实分割方法[J]. 农业机械学报, 2019, 50(11): 15-23.
Liu Xiaoyang, Zhao Dean, Jia Weikuan, et al. Fruits segmentation method based on superpixel features for apple harvesting robot [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 15-23.
[2]
刘继展. 温室采摘机器人技术研究进展分析[J]. 农业机械学报, 2017, 48(12): 1-18.
Liu Jizhan. Research progress analysis of robotic harvesting technologies in greenhouse [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 1-18.
[3]
车金庆, 王帆, 王艺洁, 等. 基于视觉注意机制的黄绿色苹果图像分割[J]. 江苏农业学报, 2018, 34(6): 1347-1353.
Che Jinqing, Wang Fan, Wang Yijie, et al. A segmentation method of yellow and green apple images based on visual attention mechanism [J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(6): 1347-1353.
[4]
Lu J, Lee W S, Hao G, et al. Immature citrus fruit detection based on local binary pattern feature and hierarchical contour analysis [J]. Biosystems Engineering, 2018, 171: 78-90.
[5]
Wajid A, Singh N K, Pan J, et al. Recognition of ripe, unripe and scaled condition of orange citrus based on decision tree classification [C]. 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 2018.
[6]
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. IEEE Computer Society. IEEE Computer Society, 2013.
[7]
Girshick R. Fast R-CNN [J]. Computer Science, 2015.
[8]
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[9]
Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. European conference on computer vision. Springer, Cham, 2016: 21-37.
[10]
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [J]. IEEE, 2016.
[11]
何进荣, 石延新, 刘斌, 等. 基于DXNet模型的富士苹果外部品质分级方法研究[J]. 农业机械学报, 2021, 52(7): 379-385.
He Jinrong, Shi Yanxin, Liu Bin, et al. External quality grading method of fuji apple based on deep learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 379-385.
[12]
彭红星, 黄博, 邵园园, 等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J]. 农业工程学报, 2018, 34(16): 155-162.
Peng Hongxing, Huang Bo, Shao Yuanyuan, et al. General improved SSD model for picking object recognition of multiple fruits in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 155-162.
[13]
薛月菊, 黄宁, 涂淑琴, 等. 未成熟芒果的改进YOLOv2识别方法[J]. 农业工程学报, 2018, 34(7): 173-179.
Xue Yueju, Huang Ning, Tu Shuqin, et al. Immature mango detection based on improved YOLOv2 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(7): 173-179.
[14]
王玲敏, 段军, 辛立伟. 引入注意力机制的YOLOv5安全帽佩戴检测方法[J]. 计算机工程与应用, 2022, 58(9): 303-312.
Wang Lingmin, Duan Jun, Xin Liwei. YOLOv5 helmet wear detection method with introduction of attention mechanism [J]. Computer Engineering and Applications, 2022, 58(9): 303-312.
〖HJ1.54mm〗
[15]
A Neubeck, LJV Gool. Efficient nonmaximum suppression [C]. International Conference on Pattern Recognition. IEEE Computer Society, 2006.
[16]
Zheng Z, Wang P, Liu W, et al. DistanceIoU loss: Faster and better learning for bounding box regression [J]. arXiv, 2019.
[17]
Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [J]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
[18]
Tan M, Pang R, Le Q V. EfficientDet: Scalable and efficient object detection [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020.
|