[1]
Maji S, Rahtu E, Kannala J, et al. Finegrained visual classification of aircraft [J]. arXiv preprint arXiv: 1306.5151, 2013.
[2]
Wah C, Branson S, Welinder P, et al. The caltechucsd birds-200-2011 dataset [J]. 2011.
[3]
Zhao P, Xie L, Zhang Y, et al. Universaltospecific framework for complex action recognition [J]. IEEE Transactions on Multimedia, 2020.
[4]
Berg T, Liu J, Woo Lee S, et al. Birdsnap: Largescale finegrained visual categorization of birds [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 2011-2018.
[5]
Huang S, Xu Z, Tao D, et al. Partstacked CNN for finegrained visual categorization [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1173-1182.
[6]
Peng Y, He X, Zhao J. Objectpart attention model for finegrained image classification [J]. IEEE Transactions on Image Processing, 2017, 27(3): 1487-1500.
[7]
Fu J, Zheng H, Mei T. Look closer to see better: Recurrent attention convolutional neural network for finegrained image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4438-4446.
[8]
Zheng H, Fu J, Mei T, et al. Learning multiattention convolutional neural network for finegrained image recognition [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 5209-5217.
[9]
Zhao B, Wu X, Feng J, et al. Diversified visual attention networks for finegrained object classification [J]. IEEE Transactions on Multimedia, 2017, 19(6): 1245-1256.
[10]
Rodríguez P, Gonfaus J M, Cucurull G, et al. Attend and rectify: A gated attention mechanism for finegrained recovery [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 349-364.
[11]
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[12]
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv preprint arXiv: 1409.1556, 2014.
[13]
Zhang N, Donahue J, Girshick R, et al. Partbased RCNNs for finegrained category detection [C]. European Conference on Computer Vision. Springer, Cham, 2014: 834-849.
[14]
Chai Y, Lempitsky V, Zisserman A. Symbiotic segmentation and part localization for finegrained categorization [C]. Proceedings of the IEEE International Conference on Computer Vision, 2013: 321-328.
[15]
Berg T, Belhumeur P N. Poof: Partbased onevs.one features for finegrained categorization, face verification, and attribute estimation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 955-962.
[16]
Zhang N, Farrell R, Iandola F, et al. Deformable part descriptors for finegrained recognition and attribute prediction [C]. Proceedings of the IEEE International Conference on Computer Vision, 2013: 729-736.
[17]
〖JP3〗Yao B, Bradski G, FeiFei L. A codebookfree and annotationfree approach for finegrained image categorization [C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2012: 3466-3473.
[18]
Shu X, Tang J, Qi G J, et al. Image classification with tailored finegrained dictionaries [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 28(2): 454-467.
[19]
Huang C, He Z, Cao G, et al. Taskdriven progressive part localization for finegrained object recognition [J]. IEEE Transactions on Multimedia, 2016, 18(12): 2372-2383.
[20]
Krause J, Jin H, Yang J, et al. Finegrained recognition without part annotations [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5546-5555.
[21]
Xiao T, Xu Y, Yang K, et al. The application of twolevel attention models in deep convolutional neural network for finegrained image classification [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 842-850.
[22]
Wang Y, Choi J, Morariu V, et al. Mining discriminative triplets of patches for finegrained classification [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1163-1172.
[23]
Jaderberg M, Simonyan K, Zisserman A. Spatial transformer networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[24]
Sun M, Yuan Y, Zhou F, et al. Multiattention multiclass constraint for finegrained image recognition [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 805-821.
[25]
Hu J, Shen L, Sun G. Squeezeandexcitation networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[26]
Behera A, Wharton Z, Hewage P R P G, et al. Contextaware attentional pooling (cap) for finegrained visual classification [C]. Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(2): 929-937.
[27]
Sun H, Cen J, Liu N, et al. MPI: Multireceptive and parallel integration for salient object detection [J]. IET Image Processing, 2021, 15(13): 3281-3291.
[28]
Abhimanyu D, Otkrist G, Pei G, et al. Confusion for fineGrained visual classification[J]. arXiv:1705.080162018.
[29]
Cubuk E D, Zoph B, Mane D, et al. Autoaugment: Learning augmentation policies from data [J]. arXiv Preprint arXiv: 1805.09501, 2018.
[30]
Touvron H, Vedaldi A, Douze M, et al. Fixing the traintest resolution discrepancy [J]. Advances in Neural Information Processing Systems, 2019, 32.
[31]
Lin T Y, RoyChowdhury A, Maji S. Bilinear CNN models for finegrained visual recognition [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1449-1457.
[32]
Wang D, Shen Z, Shao J, et al. Multiple granularity descriptors for finegrained categorization [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 2399-2406.
[33]
Anwer R M, Khan F S, Van De Weijer J, et al. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 74-85.
[34]
Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learning [C]. International Conference on Machine Learning. PMLR, 2018: 2127-2136.
[35]
Arefeen M A, Nimi S T, Uddin M Y S, et al. A lightweight relubased feature fusion for aerial scene classification [C]. 2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021: 3857-3861.
[36]
Wang D, Zhang J, Du B, et al. An empirical study of remote sensing pretraining [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022.
[37]
Ronneberger O, Fischer P, Brox T. Unet: Convolutional networks for biomedical image segmentation [C]. International Conference on Medical Image Computing and ComputerAssisted Intervention, Springer, Cham, 2015: 234-241.
[38]
Xie S, Tu Z. Holisticallynested edge detection [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1395-1403.
|