[1]
莫星煜, 毛玲莉, 王梓, 等. 国内外柑橘产业发展现状综述[J]. 农村实用技术, 2021(2): 9-10.
[2]
单杨, 丁胜华, 苏东林, 等. 柑橘副产物资源综合利用现状及发展趋势[J]. 食品科学技术学报, 2021, 39(4): 1-13.
Shan Yang, Ding Shenghua, Su Donglin, et al. Status quo of comprehensive utilization and development trend of citrus byproduct resources [J]. Journal of Food Science and Technology, 2021, 39(4): 1-13.
[3]
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [J]. European Conference on Computer Vision, 2014, 45(4): 580-587.
[4]
Girshick R. Fast R-CNN [J]. International Conference on Computer Vision, 2015.
[5]
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6]
Lin S D, Feng C, Chen Z. A ship target location and mask generation algorithms base on mask RCNN [J]. International Journal of Computational Intelligence Systems, 2019, 12(2): 1134-1143.
[7]
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [J]. IEEE Conference on Neural Information Pattern Recognition, 2015, 14(6): 779-788.
[8]
Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [J]. International Journal of Computer Vision, 2016, 17(2): 6517-6525.
[9]
Redmon J, Farhadi A. Yolov3: An incremental improvement [J]. Computer Vision and Pattern Recognition, 2018, 87(8): 101-104.
[10]
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection [J]. Computer Vision and Pattern Recognition, 2020, 57(5): 9-12.
[11]
Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [J]. International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, 2016, 14(3): 21-37.
[12]
Liang C, Xiong J, Zheng Z, et al. A visual detection method for nighttime litchi fruits and fruiting stems [J]. Computer and Electronics in Agriculture, 2020, 169: 105192.
[13]
李文婧, 徐国伟, 孔维刚, 等. 基于改进YOLOv4的植物叶茎交点目标检测研究[J]. 计算机工程与应用, 2022, 58(4): 221-228.
Li Wenjing, Xu Guowei, Kong Weigang, et al. Research on target detection of plant leafstem intersection based on Improved YOLOv4 [J]. Computer Engineering and Applications, 2022, 58(4): 221-228.
[14]
Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model [J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
[15]
熊俊涛, 郑镇辉, 梁嘉恩, 等. 基于改进YOLO v3网络的夜间环境柑橘识别方法[J]. 农业机械学报, 2020, 51(4): 199-206.
Xiong Juntao, Zheng Zhenhui, Liang Jiaen, et al. Citrus detection method in night environment based on improved YOLO v3 network [J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(4): 199-206.
[16]
刘东, 曹光乔, 李亦白, 等. 基于颜色特征的小麦抽穗扬花期麦穗识别计数[J]. 中国农机化学报, 2021, 42(11): 97-102.
Liu Dong, Cao Guangqiao, Li Yibai, et al. Recognition and counting of wheat ears at flowering stage of heading poplar based on color features [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 97-102.
[17]
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[18]
Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [J]. Computer Vision and Pattern Recognition, 2018, 283(25): 1642-1653.
|