[1] 张铄, 谢裕睿, 董建娥. 基于图像处理的植物叶片病害识别研究[J]. 现代计算机, 2021, 27(34): 112-116.
Zhang Shuo, Xie Yurui, Dong Jiane. Research on plant leaf disease recognition based on image processing [J]. Modern Computer, 2021, 27(34): 112-116.
[2] 杨涛, 雷进, 朱皓睿. 基于图像特征融合的麦冬叶部病害识别[J]. 湖北农业科学, 2021, 60(7): 135-138, 144.
Yang Tao, Lei Jin, Zhu Haorui. Recognition of ophiopogon japonicus disease based on image feature fusion [J]. Hubei Agricultural Sciences, 2021, 60(7): 135-138, 144.
[3] 谭秦红. 基于无人机图像处理的大豆叶片病害识别准确率研究[J]. 河南农业科学, 2021, 50(3): 174-180.
Tan Qinhong. Research on identification accurate rate of soybean leaf diseases based on UAV image processing [J]. Journal of Henan Agricultural Sciences, 2021, 50(3): 174-180.
[4] 石洪康, 肖文福, 黄亮. 基于卷积神经网络的家蚕病害识别研究[J]. 中国农机化学报, 2022, 43(1): 150-157.
Shi Hongkang, Xiao Wenfu, Huang Liang.Research on recognition of silkworm diseases based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(1): 150-157.
[5] 梅莹, 尹艺璐, 石称华. 基于改进VGG卷积神经网络的叶菜霜霉病智能识别算法研究[J]. 上海蔬菜, 2021(6): 76-84.
[6] 吴淑琦. 基于卷积神经网络的玉米病害识别[J]. 现代信息科技, 2021, 5(9): 6-9.
Wu Shuqi. Corn disease identification based on convolution neural network [J]. Modern Information Technology, 2021, 5(9): 6-9.
[7] 姚燕, 胡立坤, 郭军. 基于深度迁移网络MobileNetV3的地形识别[J]. 广西大学学报(自然科学版), 2021, 46(4): 996-1007.
Yao Yan, Hu Likun, Guo Jun. Terrain recognition based on deep transfer network MobileNetV3 [J]. Journal of Guangxi University (Natural Science Edition), 2021, 46(4): 996-1007.
[8] Sachin D, Tarun G, Dushyant G. Performance analysis of deep learning architectures for plant leaves disease detection [J]. Measurement: Sensors, 2022, 24.
[9] 樊湘鹏, 周建平, 许燕, 等. 基于改进卷积神经网络的复杂背景下玉米病害识别[J]. 农业机械学报, 2021, 52(3): 210-217.
Fan Xiangpeng, Zhou Jianping, Xu Yan, et al. Corn disease recognition under complex background based on improved convolution neural network [J].Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 210-217.
[10] Yadav D, Banga A, Yadav A K. A novel convolutional neural network based model for recognition and classification of apple leaf diseases [J]. Traitement du Signal, 2020, 37(6): 1093-1101.
[11] Cai Kewei, Miao Xinying, Wang Wei, et al. A modified YOLOv3 model for fish detection based on MobileNetv1 as backbone [J]. Aquacultural Engineering, 2020, 91: 102117.
[12] Indraswari R, Rokhana R, Herulambang W. Melanoma image classification based on MobileNetV2 network [J]. Procedia Computer Science, 2022, 197: 198-207.
[13] 刘强, 张道畅. 结合SENet的密集卷积生成对抗网络图像修复方法[J]. 小型微型计算机系统, 2022, 43(5): 1056-1060.
Liu Qiang, Zhang Daochang.Dense convolution generate adversarial network image inpainting method with SENet [J]. Journal of Chinese MiniMicro Computer Systems, 2022, 43(5): 1056-1060.
[14] 刘万军, 李琳. 改进感知机多类分类方法在车辆类型识别中的应用[J]. 计算机应用与软件, 2015, 32(9): 152-156, 174.
Liu Wanjun, Li Lin. Application of improved perceptronmulticlass classification method in recognition of automobile models [J]. Computer Applications and Software, 2015, 32(9): 152-156, 174.
[15] 刘万军, 李嘉欣, 曲海成. 基于多尺度卷积神经网络的交通标示识别研究[J]. 计算机应用研究, 2022, 39(5): 1557-1562.
Liu Wanjun, Li Jiaxin, Qu Haicheng. Study on traffic sign recognition based on multiscale convolutional neural network [J]. Application Research of Computers, 2022, 39(5): 1557-1562.
[16] 于合龙, 沈金梦, 毕春光. 基于知识图谱的水稻病害关联特征挖掘方法[J]. 吉林农业大学学报, 2021, 43(2): 181-188.
Yu Helong, Shen Jinmeng, Bi Chunguang. Associated features mining method of rice diseases based on knowledge graph [J]. Journal of Jilin Agricultural University, 2021, 43(2): 181-188.
[17] 崔子越, 皮家甜, 陈勇, 等. 结合改进VGGNet和Focal Loss的人脸表情识别[J]. 计算机工程与应用, 2021, 57(19): 171-178.
Cui Ziyue, Pi Jiatian, Chen Yong, et al. Facial expression recognition combined with improved VGGNet and Focal Loss [J]. Computer Engineering and Applications, 2021, 57(19): 171-178.
|