[1] Moazzam S I, Khan U S, Tiwana M I, et al. A review of application of deep learning for weeds and crops classification in agriculture [C]. 2019 International Conference on Robotics and Automation in Industry (ICRAI), 2019.
[2] Hamuda E, Glavin M, Jones E. A survey of image processing techniques for plant extraction and segmentation in the field [J]. Computers and Electronics in Agriculture, 2016, 125: 184-199.
[3] 何东健, 乔永亮, 李攀, 等. 基于SVMDS多特征融合的杂草识别[J]. 农业机械学报, 2013, 44(2): 182-187.
He Dongjian, Qiao Yongliang, Li Pan, et al. Weed recognition based on SVMDS multifeature fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 182-187.
[4] 王璨, 李志伟. 利用融合高度与单目图像特征的支持向量机模型识别杂草[J]. 农业工程学报, 2016, 32(15): 165-174.
Wang Can, Li Zhiwei. Weed recognition using SVM model with fusion height and monocular image features [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(15): 165-174.
[5] Fawakherji M, Youssef A, Bloisi D D,et al. Crop and weeds classification for precision agriculture using contextindependent pixelwise segmentation [C]. IEEE IRC 2019 The Third IEEE International Conference on Robotic Computing. IEEE, 2019.
[6] Knoll F J, Czymmek V, Poczihoski S, et al. Improving efficiency of organic farming by using a deep learning classification approach [J]. Journal of Computers and Electronics in Agriculture, 2018, 153: 346-356.
[7] McCool C, Perez T, Upcroft B. Mixtures of lightweight deep convolutional neural networks: Applied to agricultural robotics [J]. IEEE Robotics & Automation Letters, 2017: 1344-1351.
[8] Tang J, Wang D, Zhang Z, et al. Weed identification based on Kmeans feature learning combined with convolutional neural network [J]. Journal of Computers and Electronics in Agriculture, 2017, 135: 63-70.
[9] Milioto A, Lottes P, Stachniss C. Realtime blobwise sugar beets vs weeds classification for monitoring fields using convolutional neural networks [J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017.
[10] Andrea C C, Daniel B B M, Misael J B J. Precise weed and maize classification through convolutional neuronal networks [C]. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). IEEE, 2017.
[11] Chavan T R, Nandedkar A V. AgroAVNET for crops and weeds classifification: A step forward in automatic farming [J]. Computers and Electronics in Agriculture, 2018, 154: 361-372.
[12] Razavi S, Yalcin H. Using convolutional neural networks for plant classification [C]. 2017 25th Signal Processing and Communications Applications Conference (SIU), 2017.
[13] Olsen A, Konovalov D A, Philippa B, et al. DeepWeeds: A multiclass weed species image dataset for deep learning [J]. Scientific Reports, 2019, 9(1).
[14] 傅雷扬, 李绍稳, 张乐, 等. 田间除草机器人研究进展综述[J]. 机器人, 2021, 43(6): 751-768.
Fu Leiyang, Li Shaowen, Zhang Le, et al. Research progress on field weeding robots: A review [J]. Robot, 2021, 43(6): 751-768.
[15] 阳湘林. 中国植保无人机产业发展探析[J]. 中国植保导刊, 2020, 40(5): 67-71, 78.
Yang Xianglin. Analysis on the development status of plant protection unmanned aerial vehicle in China [J]. China Plant Protection, 2020, 40(5): 67-71, 78.
[16] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[17] Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3 [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
[18] 何雪英, 韩忠义, 魏本征. 基于深度卷积神经网络的色素性皮肤病识别分类[J]. 计算机应用, 2018, 38(11): 3236-3240.
He Xueying, Han Zhongyi, Wei Benzheng. Pigmented skin lesion recognition and classification based on deep convolutional neural network [J]. Journal of Computer Applications, 2018, 38(11): 3236-3240.
[19] Bagherinezhad H, Horton M, Rastegari M, et al. Label Refinery: Improving ImageNet classification through label progression [J]. arXiv preprint arXiv: 1805.02641, 2018.
[20] Yalniz I Z, Jégou H, Chen K, et al. Billionscale semisupervised learning for image classification [J]. arXiv preprint arXiv: 1905.00546, 2019.
[21] 凌弘毅. 基于知识蒸馏方法的行人属性识别研究[J]. 计算机应用与软件, 2018, 35(10): 181-184, 193.
Ling Hongyi. Pedestrian attribute recognition based on knowledge distillation [J]. Computer Applications and Software, 2018, 35(10): 181-184, 193.
[22] 高钦泉, 赵岩, 李根, 等. 基于知识蒸馏的超分辨率卷积神经网络压缩方法[J]. 计算机应用, 2019, 39(10): 2802-2808.
Gao Qinquan, Zhao Yan, Li Gen, et al. Compression method of superresolution convolutional neural network based on knowledge distillation [J]. Journal of Computer Applications, 2019, 39(10): 2802-2808.
|