中国农机化学报 ›› 2024, Vol. 45 ›› Issue (4): 45-50.DOI: 10.13733/j.jcam.issn.2095-5553.2024.04.007
陈天兄1,范俊杰2,3,4,张日喜1,刘建龙3, 4,柏宗春3, 4,孙建国5
出版日期:
2024-04-15
发布日期:
2024-04-28
基金资助:
Chen Tianxiong1, Fan Junjie2,3,4, Zhang Rixi1, Liu Jianlong3, 4, Bai Zongchun3, 4, Sun Jianguo5
Online:
2024-04-15
Published:
2024-04-28
摘要: 中国目前的养殖水产出口量与水产产量均位于世界前列,为保证养殖水产产品的产品质量和人的饮食健康,对养殖水产进行精细化投喂,研发改进精准投喂装备就显得尤为重要。目前,产业强调水产养殖装备的精细化、数字化、智能化,通过对基于视觉、声音、被动自需式、生长环境建模决策四种不同角度的智能投喂系统研究进展综述,研究水产养殖中智能投喂系统的发展趋势,通过数字化和智能技术,投喂装备实现精准管理,提升养殖效益,强调创新对于推动水产养殖行业发展至关重要,以期为水产养殖投喂装备的数字化、精准化发展打开新思路。
中图分类号:
陈天兄, 范俊杰, 张日喜, 刘建龙, , 柏宗春, , 孙建国. 水产养殖投喂装备发展现状研究[J]. 中国农机化学报, 2024, 45(4): 45-50.
Chen Tianxiong, Fan Junjie, Zhang Rixi, Liu Jianlong, , Bai Zongchun, , Sun Jianguo. Research on the development situation of aquatic feeding equipment[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 45-50.
[1] 冯双星. 基于深度学习的鱼类摄食强度探测与智能投喂系统研究[D]. 南宁: 广西大学, 2023.〖JP2〗Feng Shuangxing. Deep learning based fish feeding intensity detection and intelligent feeding system [D]. Nanning: Guangxi University, 2023. [2] 莽琦, 徐钢春, 朱健, 等. 中国水产养殖发展现状与前景展望[J]. 渔业现代化, 2022, 49(2): 1-9. Mang Qi, Xu Gangchun, Zhu Jian, et al. Developmental status and prospective vision for Chinas aquaculture [J]. Fishery Modernization, 2022, 49(2): 1-9. [3] 郑书康. 基于计算机视觉的鱼类行为学规律与精准投喂的研究[D]. 杭州: 浙江大学, 2021.Zheng Shukang. Research on fish vision and precision feeding based on computer vision [D]. Hangzhou: Zhejiang University, 2021. [4] Sadoul B, Mengues E P, Friggens N, et al. A new method for measuring group behaviours of fish shoals from recorded videos taken in near aquaculture conditions [J]. Aquaculture, 2014, 430: 179-187. [5] Cho C Y, Bureau D P. Reduction of waste output from salmonis aquaculture through feeds and feeding [J]. Progressive FishCulturist, 1997, 59(2): 155-160. [6] Mly H, Aamodt A, Misimi E. A spatiotemporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture [J]. Computers and Electronics in Agriculture, 2019, 167: 105087. [7] Atoum Y, Srivastava S, Liu X. Automatic feeding control for dense aquaculture fish tanks [J]. IEEE Signal Processing Letters, 2014, 22(8): 1089-1093. [8] An D, Hao J, Wei Y, et al. Application of computer vision in fish intelligent feeding system—A review [J]. Aquaculture Research, 2021, 52(2): 423-437. [9] Ballintijn C M, Juch P J W. Interaction of respiration with coughing, feeding, vision and oculomotor control in fish [J]. Brain Behavior and Evolution, 1984, 25(2-3): 99-108. [10] Eguiraun H, Casquero O, Martinez I. The Shannon entropy trend of a fish system estimated by a machine vision approach seems to reflect the molar se: Hg ratio of its feed [J]. Entropy, 2018, 20(2): 90-90. [11] 乔峰, 郑堤, 胡利永, 等. 基于机器视觉实时决策的智能投饵系统研究[J]. 工程设计学报, 2015, 22(6): 528-533. Qiao Feng, Zheng Di, Hu Liyong, et al. Research on smart bait casting machine based on machine vision technology [J]. Chinese Journal of Engineering Design, 2015, 22(6): 528-533. [12] 唐荣, 陈军, 刘世晶, 等. 基于声学方法的水产养殖投饲反馈技术研究进展[J]. 渔业现代化, 2019, 46(3): 15-21. Tang Rong, Chen Jun, Liu Shijing, et al. Progress of research on feedback technology of feeding in aquaculture based on acoustic methods [J]. Fishery Modernization, 2019, 46(3): 15-21. [13] Brunnschweiler J M. Tracking freeranging sharks with handfed intragastric acoustic transmitters [J]. Marine and Freshwater Behavior and Physiology, 2009, 42(3):201-209. [14] Gatan R, Julien B, Julie B, et al. Passive acoustic monitoring reveals feeding attempts at close range from soaking demersal long lines by two killer whale ecotypes [J]. Marine Mammal Science, 2021, 38(1): 304-325. [15] Reis J, Peixoto S, Soares R, et al. Passive acoustic monitoring as a tool to assess feed response and growth of shrimp in ponds and research systems [J]. Aquaculture, 2022, 546: 737326. [16] 李明磊. 深水网箱中水声鱼群远程监测系统的研究[D]. 厦门: 厦门大学, 2007.Li Minglei. Study on an underwater acoustic remote monitor system for bred fish in net cages of deep water [D]. Xiamen: Xiamen University, 2007. [17] Wright D E, Eastcott A. Association of an acoustic signal with operant conditioned feeding responses in thick lipped mullet, Crenimugil labrosus (Risso) and common carp, Cyprinus carpio (L.) [J]. Journal of Fish Biology, 1982, 21(6): 693-698. [18] 张小康, 许肖梅. 基于水声多波束技术的深水网箱鱼群状态远程监测仪研究[J]. 仪器仪表学报, 2009, 30(8): 1656-1661. Zhang Xiaokang, Xu Xiaomei. Remote monitoring system for offshore fish cage based on underwater acoustic multibeam technique [J]. Chinese Journal of Scientific Instrument, 2009, 30(8): 1656-1661. [19] 张国胜, 张沛东, 陈勇, 等. 鲫幼鱼音响驯化的研究[J]. 大连水产学院学报, 2002, 1(9): 48-52. Zhang Guosheng, Zhang Peidong, Chen Yong, et al. Acoustic behaviors control of juvenile carassius auratus linnaeus [J]. Journal of Dalian Fisheries University, 2002, 1(9): 48-52. [20] 胡运燊, 石小涛, 刘德富, 等. 声音导鱼技术的分析与展望[J]. 水生态学杂志,2013, 34(4): 89-94. Hu Yunsheng, Shi Xiaotao, Liu Defu, et al. Technology analysis and outlook for the sound guidance fish [J]. Journal of Hydroecology, 2013, 34(4): 89-94. [21] Macaulay M C, Wishner K F, Daly K L. Acoustic scattering from zooplankton and micronekton in relation to a whale feeding site near Georges Bank and Cape Cod [J]. Continental Shelf Research, 1995, 15(04-05): 509-537. [22] Lagardere J P, Mallekh R, Mariani A. Acoustic characteristics of two feeding modes used by brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss) and turbot (Scophthalmus maximus) [J]. Aquaculture, 2004, 240(1-4): 607-616. [23] Leal E, FernandezDuran B,Guillot R, et al. Stressinduced effects on feeding behavior and growth performance of the sea bass (Dicentrarchus labrax): A selffeeding approach [J]. Journal of Comparative Physiology B, 2011, 181(8): 1035-1044. [24] Flood M J, Noble C, Kagaya R, et al. Examining the daily feeding rhythms of amago Oncorhynchus masou using selffeeding systems [J]. Aquaculture, 2011, 318(1-2): 244-247. [25] Pratiwy M F, Kohbara J. Dualistic feeding pattern of Nile tilapia (Oreochromis niloticus, L.) reared under different selffeeding system conditions [J]. Aquaculture Research, 2018, 49(2): 969-976. [26] Shi C, Liu Y, Yi M M, et al. Comparison of timerestricted and ad libitum selffeeding on the growth, feeding behavior and daily digestive enzyme profiles of Atlantic salmon [J]. Chinese Journal of Oceanology and Limnology, 2017, 35(4): 729-736. [27] Vivas M, Rubio V C, SánchezVázquez F J, et al. Dietary selfselection in sharpsnout seabream (Diplodus puntazzo) fed paired macronutrient feeds and challenged with protein dilution [J]. Aquaculture, 2006, 251(2-4): 430-437. [28] Valente L M P, Fauconneau B, Gomes E F S, et al. Feed intake and growth of fast and slow growing strains of rainbow trout (Oncorhynchus mykiss) fed by automatic feeders or by selffeeders [J]. Aquaculture, 2001, 195(1-2): 121-131. [29] Aghuzbeni S H H, Hajirezaee S, Matinfar A, et al. A preliminary study on polyculture of western white shrimp (Litopenaeus vannamei) with mullet (Mugil cephalus): An assessment of water quality, growth parameters, feed intake efficiency and survival [J]. Journal of Applied Animal Research, 2017, 45(1): 247-251. [30] BorquezLopez R A, CasillasHernandez R, LopezElias J A, et al. Improving feeding strategies for shrimp farming using fuzzy logic, based on water quality parameters [J]. Aquacultural Engineering, 2018, 81: 38-45. [31] Eissa E S H, Baghdady E S, Gaafar A Y, et al. Assessing the influence of dietary Pediococcus acidilactici probiotic supplementation in the feed of European sea bass (Dicentrarchus labrax L.)(Linnaeus, 1758) on farm water quality, growth, feed utilization, survival rate, body composition, blood biochemical parameters, and intestinal histology [J]. Aquaculture Nutrition, 2022, 2022: 1-11. [32] Li Y C, Zhang J M, Fu B, et al. Textural quality, growth parameters and oxidative responses in Nile tilapia (Oreochromis niloticus) fed faba bean water extract diet [J]. PeerJ, 2022, 10: 19. [33] Mansour A T, Fayed W M, Alsaqufi A S, et al. Ameliorative effects of zeolite and yucca extract on water quality, growth performance, feed utilization, and hematobiochemical parameters of European seabass reared at high stocking densities [J]. Aquaculture Reports, 2022, 26: 101321. [34] 吴强泽. 池塘养殖智能投饲系统的研究[D]. 南京: 南京农业大学, 2016. Wu Qiangze. Research on intelligent feeding system of pond aquaculture [D]. Nanjing: Nanjing Agricultural University, 2016. [35] 盛平, 王英杰, 倪冬玮. 基于实时水质参数的智能养殖装备设计[J]. 渔业现代化, 2017, 44(1): 1-5. Sheng Ping, Wang Yingjie, Ni Dongwei. Design of intelligent aquaculture equipment based on realtime water quality monitoring [J]. Fishery Modernization, 2017, 44(1): 1-5. [36] 周志刚, 解绶启, 崔奕波, 等. 异育银鲫适宜投喂时间的建立[J]. 饲料广角, 2003(13): 37-39. Zhou Zhigang, Xie Shouqi, Cui Yibo, et al. Establishment of suitable feeding time for allogynogenetic crucian carp [J]. Feed China, 2003(13): 37-39. [37] 张磊. 黄颡鱼能量收支及生物能量学最适生长模型的研究[D]. 武汉: 华中农业大学, 2010.〖JP3〗Zhang Lei. Energy budget and optimum bioenergetic growth model of yellow catfish pelteobagrus fulvidraco [D].〖JP2〗Wuhan: Huazhong Agricultural University, 2010. (上接第44页) [9] 桓源, 任工昌, 孙建功, 等. 基于TRIZ理论苹果采摘机器人的设计与分析[J]. 机械传动, 2023, 47(5): 51-56. Huan Yuan, Ren Gongchang, Sun Jiangong, et al. Design and analysis of apple picking robots based on TRIZ [J]. Journal of Mechanical Transmission, 2023, 47 (5): 51-56. [10] 权龙哲, 曾百功, 马云海, 等. 基于TRIZ理论的玉米根茬收获系统设计[J]. 农业工程学报, 2012, 28(23): 26-32. Quan Longzhe, Zeng Baigong, Ma Yunhai, et al. Design of corn stubble harvester based on TRIZ theory [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(23): 26-32. [11] 苏建宁, 魏晋. 基于AHP/QFD/TRIZ的玫瑰花蕾采摘机设计[J]. 机械设计, 2020, 37(8): 121-126. Su Jianning, Wei Jin. Design of rose buds picking machine based on AHP/QFD/TRIZ [J]. Journal of Machine Design, 2020, 37(8): 121-126. [12] Caco M, Kohár R, Hrcek S, et al. Use the method of TRIZ in optimizing automated machine for ultrasonic welding [J]. Procedia Engineering, 2017, 192: 80-85. [13] Cho S. Characteristics of traditional farm equipment in korea from the viewpoint of TRIZs invention principle [C]. New Opportunities for Innovation Breakthroughs for Developing Countries and Emerging Economies: 19th International TRIZ Future Conference, 2019: 458-471. [14] 李瑞, 武逸凡, 李守太, 等. 基于ANSYS Workbench和ADAMS的振动式花椒采摘机仿真分析及参数优化[J]. 西南大学学报(自然科学版), 2021, 43(12): 57-66. Li Rui, Wu Yifan, Li Shoutai, et al. Simulation analysis and parameter optimization of a prickly ash vibration picker based on ANSYS workbench and ADAMS [J]. Journal of Southwest University (Natural Science Edition), 2021, 43(12): 57-66. [15] 张智明, 张宏文, 王卉敏, 等. 水平摘锭式采棉机采摘机构的虚拟设计与运动仿真[J]. 中国农机化学报, 2014, 35(3): 31-34. Zhang Zhiming, Zhang Hongwen, Wang Huimin, et al. Virtual design and kinematic simulation for horizontal spindle type cotton picker with picking mechanism [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(3): 31-34. [16] 李赞松, 曹成茂, 伍德林, 等. 油茶果采摘装置关键部件的设计与试验[J]. 安徽农业大学学报, 2021, 48(2): 292-298. Li Zansong, Cao Chengmao, Wu Delin, et al. Design and test of key components of camellia oleifera fruit picking device [J]. Journal of Anhui Agricultural University, 2021, 48 (2): 292-298. [17] 罗兵. 基于TRIZ理论的刺梨采摘机创新设计研究[D]. 贵州: 贵州大学, 2021.Luo Bing. Research on innovative design of cili picker based on TRIZ theory [D]. Guizhou: Guizhou University, 2021. [18] 李国杰, 邓干然, 吴洪珠, 等. 4UMZ-1400型后收集式木薯联合收获机设计与试验[J]. 中国农机化学报, 2022, 43(3): 1-8. Li Guojie, Deng Ganran, Wu Hongzhu, et al. Design and experiment of 4UMZ-1400 rearcollected type cassava combined harvester [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 1-8. |
[1] | 胡皓若, 张跃跃, 周佳良, 陈青, 王金鹏. 果蔬采摘机器人末端执行器研究现状[J]. 中国农机化学报, 2024, 45(4): 231-236. |
[2] | 蒋振晗, , 王钰旭, , 魏逸飞, , 于艳, 孙永佳, , 孙宜田, . 电驱式玉米高速作业播种机控制系统设计与试验[J]. 中国农机化学报, 2024, 45(3): 24-30. |
[3] | 高昂, 卢传兵, 任龙龙, 李玲, 沈向, 宋月鹏, . 基于改进YOLOX-s的苹果花生长状态检测方法及验证分析[J]. 中国农机化学报, 2023, 44(8): 162-167. |
[4] | 陈锦, 刘云强, 王威, 王璐, 刘立晶, . 播种机监控系统技术研究现状与展望[J]. 中国农机化学报, 2023, 44(6): 161-167. |
[5] | 王鹏, 金诚谦, , 王超, 李盼盼, 赵紫皓. 谷物联合收获机脱粒系统研究现状[J]. 中国农机化学报, 2023, 44(5): 48-57. |
[6] | 王金武, 杨会民, 陈毅飞, 周欣, 蒋永新, 张佳喜. 国内仿形技术在农用机械上的应用分析[J]. 中国农机化学报, 2023, 44(4): 31-39. |
[7] | 杨昌敏, 易文裕, 赵帮泰, 程方平, 张巍, 刘琳. 水肥一体化技术的应用——以四川桑园为例[J]. 中国农机化学报, 2023, 44(4): 71-75. |
[8] | 赵男, 金诚谦, 王超, 唐小涵, 郭榛. 谷物联合收获机清选系统智能化技术研究进展[J]. 中国农机化学报, 2023, 44(3): 163-170. |
[9] | 王文月, 袁恺, 张辉, 王璐瑶, 李静红, 张丽娜. 农业与食品领域新型研发机构发展现状与对策[J]. 中国农机化学报, 2023, 44(12): 263-268. |
[10] | 王江, 李浩, 马志伟, 郝建军, 刘文科. 国内外设施蔬菜机械化发展现状分析及对策[J]. 中国农机化学报, 2023, 44(1): 124-130. |
[11] | 李东升, 胡文泽, 兰玉彬, 范明洪, 李翠云, 朱俊科. 深度学习在杂草识别领域的研究现状与展望[J]. 中国农机化学报, 2022, 43(9): 137-144. |
[12] | 邹亮亮, , 刘雪美, , 苑进, , 董小花. 叶菜机械化收获技术与装备研究进展[J]. 中国农机化学报, 2022, 43(6): 15-23. |
[13] | 欧阳安, 樊晨龙, 赵慧慧, 董佳琪, 焦雨轩. 玉米全程机械化现状与装备研究进展[J]. 中国农机化学报, 2022, 43(6): 207-214. |
[14] | 刘华伟, 张萍, 杨晓慧, 邓玉杰, 李柯莹, 张国海. 国内谷物联合收获机割台智能化现状与发展研究[J]. 中国农机化学报, 2022, 43(4): 189-197. |
[15] | 周小燕, 倪琦, 徐皓, 仪坤秀. 2021年中国水产养殖全程机械化发展报告[J]. 中国农机化学报, 2022, 43(12): 1-4. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296