[1] 杨涛, 李晓晓. 机器视觉技术在现代农业生产中的研究进展[J]. 中国农机化学报, 2021, 42(3): 171-181.
Yang Tao, Li Xiaoxiao. Research progress of machine vision technology in modern agricultural production [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 171-181.
[2] 陈国防, 陈兆英, 王玉亮, 等. 基于数据增强深度学习的苹果花检测方法研究[J]. 中国农机化学报, 2022, 43(5): 148-155.
Chen Guofang, Chen Zhaoying, Wang Yuliang, et al. Research on detection method of apple flower based on dataenhanced deep learning[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 148-155.
[3] 杨其晟, 李文宽, 杨晓峰, 等. 改进YOLOv5的苹果花生长状态检测方法[J]. 计算机工程与应用, 2022, 58(4): 237-246.
Yang Qisheng, Li Wenkuan, Yang Xiaofeng, et al. Improved YOLOv5 method for detecting growth status of apple flowers[J]. Computer Engineering and Applications, 2022, 58(4): 237-246.
[4] Sun C H. Apple, peach, and pear flower detection using semantic segmentation network and shape constraint level set[J]. Computers and Electronics in Agriculture, 2021, 185(1).
[5] 尚钰莹, 张倩如, 宋怀波. 基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用[J]. 农业工程学报, 2022, 38(9): 222-229.
Shang Yuying, Zhang Qianru, Song Huaibo. Application of deep learning using YOLOv5s to apple flower detection in natural scenes [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 222-229.
[6] 邱天衡, 王玲, 王鹏, 等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13): 63-73.
Qiu Tianheng, Wang Ling, Wang Peng, et al. Research on object detection algorithm based on improved YOLOv5 [J]. Computer Engineering and Applications, 2022, 58(13): 63-73.
[7] 李登峰, 高明, 叶文韬. 结合轻量级特征提取网络的舰船目标检测算法[J/OL]. 计算机工程与应用. https:∥kns.cnki.net/kcms/detail/11.2127.TP.20220909.1410.016.html.
Li Dengfeng, Gao Ming, Ye Wentao, et al. Ship target detection algorithm combined with lightweight feature extraction network[J/OL]. Computer Engineering and Applications. https:∥kns. cnki.net/kcms/detail/11.2127.TP.20220909.1410.016.html.
[8] 殷献博, 邓小玲, 兰玉彬, 等. 基于改进YOLOX-Nano算法的柑橘梢期长势智能识别[J]. 华南农业大学学报, 2023(1): 142-150.
Yin Xianbo, Deng Xiaoling, Lan Yubin, et al. Intelligent identification of citrus shoot growth based on improved YoloxNano algorithm [J]. Journal of South China Agricultural University, 2023(1): 142-150.
[9] 张盼盼, 李其申, 杨词慧. 基于轻量级分组注意力模块的图像分类算法[J]. 计算机应用, 2020, 40(3): 645-650.
Zhang Panpan, Li Qishen, Yang Cihui. Image classification algorithm based on lightweight groupwise attention module[J]. Journal of Computer Applications, 2020, 40(3): 645-650.
[10] Li R, Wang S, Wang Z, et al. Breast cancer Xray image staging: Based on efficient net with multiscale fusion and CBAM attention[J]. Journal of Physics: Conference Series. 2021, 2082(1): 012006.
[11] 江俊君, 李震宇, 刘贤明. 基于深度学习的单目深度估计方法综述[J]. 计算机学报, 2022, 45(6): 1276-1307.
Jiang Junjun, Li Zhenyu, Liu Xianming. Survey of monocular depth estimation methods based on deep learning [J]. Chinese Journal of Computers, 2022, 45(6): 1276-1307.
[12] Leng H, Tan M, Liu C, et al. PolyLoss: A polynomial expansion perspective of classification loss functions [J]. In Proceedings of the Tenth International Conference on Learning Representations, Virtual, 25-29 April 2022.
[13] Zheng Z, Wang P, Liu W, et al. DistanceIoU Loss: Faster and better learning for bounding box regression [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[14] Ren S, He K, Girshick, R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[15] 何颖, 陈丁号, 彭琳. 基于改进YOLOv5模型的经济林木虫害目标检测算法研究[J]. 中国农机化学报, 2022, 43(4): 106-115.
He Ying, Chen Dinghao, Peng Lin. Research on economic forest pest target detection algorithm based on improved YOLOv5 model[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 106-115.
|