English

中国农机化学报

中国农机化学报 ›› 2023, Vol. 44 ›› Issue (8): 162-167.DOI: 10.13733/j.jcam.issn.2095-5553.2023.08.022

• 农业信息化工程 • 上一篇    下一篇

基于改进YOLOX-s的苹果花生长状态检测方法及验证分析

高昂1, 2,卢传兵3,任龙龙1, 2,李玲2, 4,沈向2, 4,宋月鹏1, 2   

  1. 1. 山东农业大学机械与电子工程学院,山东泰安,271018; 2. 山东省园艺机械与装备重点实验室,
    山东泰安,271018; 3. 山东省烟台市农业技术推广中心,山东烟台,264001;
    4. 山东农业大学园艺科学与工程学院,山东泰安,271018
  • 出版日期:2023-08-15 发布日期:2023-09-12
  • 基金资助:
    山东省现代农业产业技术体系果品产业创新团队资金(SDAIT—06—12、SDAIT—06—04、SDAIT—06—07);烟台市科技计划项目(乡村振兴类)(2022XCZX097)

Detection method and validation analysis based on the improved YOLOX-s apple blossom growth state

  • Online:2023-08-15 Published:2023-09-12

摘要: 为实现苹果园智能疏花,提出一种基于改进YOLOX-s的苹果花生长状态检测方法。采集并建立苹果花数据集,以用于网络模型的训练和验证,搭建YOLOX-s模型,对主干网络进行改进,在输出特征后两层加入CBAM注意力机制模块,采用EIOU作为模型的回归函数,在后处理阶段引入Focal Loss损失函数,以提高模型对拥簇苹果花的检测能力,提高模型的平均精度。结果表明改进后的YOLOX-s模型精确度为91.75%,相比未改进前提升0.5%,召回率提升6.19%,平均精度提高4.28%。该研究为实现苹果花生长状态智能检测提供技术支持,指导智能化疏花精准决策。

关键词: 苹果花检测, YOLOX, 智能化果园

Abstract: In order to realize intelligent blossom thinning in apple orchards, this paper proposes an improved YOLOX-s apple blossom growth state detection method. First, the apple blossom dataset was collected and established for the training and verification of the network model, and then the YOLOX-s model was built, and the backbone network was improved. The Convolutional Block Attention Module (CBAM) attention mechanism module was added to the two layers after the output features, EIOU was used as the regression function of the model and the Focal Loss function was introduced in the postprocessing stage to improve the models ability to detect clustered apple blossoms and improve the average accuracy of the model. The results showed that the accuracy of the improved YOLOX-s model was 91.75%, which was 0.5% higher in precision, 6.19% higher in recall rate, and 4.28% higher in average precision than before. This research provides technical support for the realization of intelligent detection of apple blossom growth status to guide the accurate decision of intelligent blossom thinning.

Key words: apple flower detection, YOLOX, intelligent orchard

中图分类号: