[1] 马聪, 陈学东. 黄花菜采摘机器人视觉系统研究[J]. 宁夏农林科技, 2021, 62(12): 60-64.
Ma Cong, Chen Xuedong. Vision system of daylily picking robot [J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2021, 62(12): 60-64.
[2] 郑太雄, 江明哲, 冯明驰. 基于视觉的采摘机器人目标识别与定位方法研究综述[J]. 仪器仪表学报, 2021, 42(9): 28-51.
Zheng Taixiong, Jiang Mingzhe, Feng Mingchi. Vision based target recognition and location for picking robot: A review [J]. Chinese Journal of Scientific Instrument, 2021, 42(9): 28-51.
[3] 岑海燕, 朱月明, 孙大伟, 等. 深度学习在植物表型研究中的应用现状与展望[J]. 农业工程学报, 2020, 36(9): 1-16.
Cen Haiyan, Zhu Yueming, Sun Dawei,et al. Current status and future perspective of the application of deep learning in plant phenotype research [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 1-16.
[4] 赵立新, 邢润哲, 白银光, 等. 深度学习在目标检测的研究综述[J]. 科学技术与工程, 2021, 21(30): 12787-12795.
Zhao Lixin, Xing Runzhe, Bai Yinguang, et al. Review on survey of deep learning in target detection [J]. Science Technology and Engineering, 2021, 21(30): 12787-12795.
[5] Girshick R, Donahue J, Darrell T, et al. Region based convolutional networks for accurate object detection and segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142-158.
[6] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149.
[7] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multi box detector [C]. European Conference on Computer Vision, 2016: 21-37.
[8] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
[9] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 7263-7271.
[10] Redmon J, Farhadi A. YOLOv3: An incremental improvement [C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
[11] 董文轩, 梁宏涛, 刘国柱, 等. 深度卷积应用于目标检测算法综述[J]. 计算机科学与探索, 2022, 16(5): 1025-1042.
Dong Wenxuan, Liang Hongtao, Liu Guozhu, et al. Review of deep convolution applied to target detection algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5):1025-1042.
[12] 朱红春, 李旭, 孟炀, 等. 基于Faster R-CNN网络的茶叶嫩芽检测[J]. 农业机械学报, 2022, 53(5): 217-224.
Zhu Hongchun, Li Xu, Meng Yang, et al. Tea bud detection based on Faster R-CNN network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 217-224.
[13] 岳有军, 孙碧玉, 王红君, 等. 基于级联卷积神经网络的番茄果实目标检测[J]. 科学技术与工程, 2021, 21(6): 2387-2391.
Yue Youjun, Sun Biyu, Wang Hongjun, et al. Object detection of tomato fruit based on cascade RCNN [J]. Science Technology and Engineering, 2021, 21(6): 2387-2391.
[14] 汤旸, 杨光友, 王焱清. 面向采摘机器人的改进YOLOv3-tiny轻量化柑橘识别方法[J]. 科学技术与工程, 2022, 22(31): 13824-13832.
Tang Yang, Yang Guangyou, Wang Yanqing. Improved YOLOv3-tiny lightweight citrus recognition method for picking robot [J]. Science Technology and Engineering, 2022, 22(31): 13824-13832.
[15] 王卓, 王健, 王枭雄, 等. 基于改进YOLOv4的自然环境苹果轻量级检测方法[J]. 农业机械学报, 2022, 53(8): 294-302.
on improved YOLOv4 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 294-302.
[16] Zhang L, Wu L, Liu Y. Hemerocallis citrina Baroni maturity detection method integrating lightweight neural network and dual Attention mechanism [J]. Electronics, 2022, 11(17): 2743.
[17] 邓颖, 吴华瑞, 朱华吉. 基于实例分割的柑橘花朵识别及花量统计[J]. 农业工程学报, 2020, 36(7): 200-207.
Deng Ying, Wu Huarui, Zhu Huaji. Recognition and counting of citrus flowers based on instance segmentation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 200-207.
[18] 宋爽, 张悦, 张琳娜, 等. 基于深度学习的轻量化目标检测算法[J]. 系统工程与电子技术, 2022, 44(9): 2716-2725.
Song Shuang, Zhang Yue, Zhang Linna, et al. Lightweight target detection algorithm based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2716-2725.
[19] 李东升, 胡文泽, 兰玉彬, 等. 深度学习在杂草识别领域的研究现状与展望[J]. 中国农机化学报, 2022, 43(9): 137-144.
Li Dongsheng, Hu Wenze, Lan Yubin, et al. Research status and prospect of deep learning in weed recognition [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 137-144.
[20] Ma N, Zhang X, Zheng H, et al. Shuffle Net v2: Practical guidelines for efficient CNN architecture design[C]. European Conference on Computer Vision, 2018: 116-131.
[21] Zhang X, Zhou X, Lin M, et al. Shuffle Net: An extremely efficient convolutional neural network for mobile devices [C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 6848-6856.
[22] Andrew G Howard, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications [J]. Computer Vision and Pattern Recognition, 2017.
[23] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
|