[1] 朱春华, 周先艳, 李进学, 等. 中国柠檬主要营养功效及产品开发研究进展[J].包装与食品机械, 2018, 36(3): 48-53.
[2] Liu J, Wang X. Plant diseases and pests detection based on deep learning: A review [J]. Plant Methods, 2021, 17: 1-18.
[3] Kumar S, Kaur R. Plant disease detection using image processinga review [J]. International Journal of Computer Applications, 2015, 124(16): 6-9.
[4] 刘洪江, 王懋, 刘丽华, 等. 基于深度学习的小目标检测综述[J]. 计算机工程与科学, 2021, 43(8): 1429-1442.
Liu Hongjiang, Wang Mao, Liu Lihua, et al.A survey of small object detection based on deep learning [J]. Computer Engineering & Science, 2021, 43(8): 1429-1442.
[5] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[6] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[7] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. ArXiv Preprint ArXiv: 1804.02767, 2018.
[8] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection [J]. ArXiv Preprint ArXiv: 2004.10934, 2020.
[9] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. Proceedings of the 14th European Conference on Computer Vision. Berlin, Germany: Springer Verlag, 2016: 21-37.
[10] Wang X, Liu J, Zhu X. Early realtime detection algorithm of tomato diseases and pests in the natural environment [J]. Plant Methods, 2021, 17(1): 1-17.
[11] 李昊, 刘海隆, 刘生龙. 基于深度学习的柑橘病虫害动态识别系统研发[J]. 中国农机化学报, 2021, 42(9):195-201, 208.
Li Hao, Liu Hailong, Liu Shenglong. Research on dynamic identification system of citrus diseases and pests based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(09): 195-201, 208.
[12] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[13] Girshick R. Fast R-CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[14] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[15] 宋中山, 汪进, 郑禄, 等. 基于二值化的Faster R-CNN柑橘病虫害识别研究[J]. 中国农机化学报, 2022, 43(6): 150-158.
Song Zhongshan, Wang Jin, Zheng Lu, et al. Research on citrus pest identification based on binary Faster R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 150-158.
[16] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[17] Rezatofighi H, Tsoi N, Gwak Jy, et al. Generalized intersection over union: A metric and a loss for bounding box regression [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[18] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[19] Huang G, Liu Z, Maaten L, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[20] Parraga Alava J, Alcivar Cevallos R, Morales Carrillo J, et al. LeLePhid: An image dataset for aphid detection and infestation severity on lemon leaves [J]. Data, 2021, 6(5): 51.
|