[1] 魏丽冉, 岳峻, 李振波, 等. 基于核函数支持向量机的植物叶部病害多分类检测方法[J]. 农业机械学报, 2017, 48(S1): 166-171. Wei Liran, Yue Jun, Li Zhenbo, et al. Multi-classification detection method for plant leaf diseases based on kernel function SVM [J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(S1): 166-171. [2] 马浚诚, 杜克明, 郑飞翔, 等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报, 2018, 34(12): 186-192. Ma Juncheng, Du Keming, Zheng Feixiang, et al.Disease recognition system for greenhouse cucumbers based on deep convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 186-192. [3] 孙俊, 谭文军, 毛罕平. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215. Sun Jun, Tan Wenjun, Mao Hanping.Recognition of multiple plant leaf diseases based on improved convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 209-215. [4] Mohanty S P, Hughes D P, Salathe M. Using deep learning for image-based plant disease detection [J]. Frontiers in plant Science, 2016, 7: 1-10. [5] Amara J, Bouaziz B, Algergawy A, et al. A deep learning-based approach for banana leaf diseases classification [C]. Gesellschaft Fur Informatik, Bonn: Lecture Notes in Informatics, 2017: 79-88. [6] Brahimi M, Boukhalfa K, Moussaoui A. Deep learning for tomato disease: Classification and symptoms visualization [J]. Applied Artificial Intelligence, 2017, 31(4): 299-315. [7] Liu B, Zhang Y, He D, et al. Identification of apple leaf diseases based on deep convolutional neural networks [J]. Symmetry, 2018, 10(1): 1-16. [8] Dyrmann M, Karstoft H, Midtiby H S. Plant species classification using deep convolutional neural network [J]. Biosystems Engineering, 2016, 151: 72-80. [9] 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171. Zhang Jianhua, Kong Fantao, Wu Jianzhai, et al.Cotton disease identification model based on improved VGG convolution neural network [J]. Journal of China Agricultural University, 2018, 23(11): 161-171. [10] 郑一力, 张露. 基于迁移学习的卷积神经网络植物叶片图像识别方法[J]. 农业机械学报, 2018, 49(S1): 354-359. Zheng Yili, Zhang Lu. Plant leaf image recognition method based on transfer learning with convolutional neural networks [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 354-359. [11] Vinyals O, Blundell C, Lillicrap T, et al. Matching network for one shot learning [J]. In Advances in Neural Information Processing System, 2016, 7: 3630-3638. [12] Sung F, Yang Y, Zhang L. Learning to compare: Relation network for few-shot learning [C]. Hawaii USA: IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1199-1208. [13] 任胜男, 孙钰, 张海燕, 等. 基于one-shot学习的小样本植物病害识别[J]. 江苏农业学报, 2019, 35(5): 1061-1067. Ren Shengnan, Sun Yu, Zhang Haiyan, et al.Plant disease identification for small sample based on one-shot learning [J]. Jiangsu Journal of Agriculture Sciences, 2019, 35(5): 1061-1067. [14] Snell J, Swersky K, Zemel R S. Prototypical networks for few-shot learning [C]. Long Beach: Thirty-first Conference in Neural Information Processing Systems, 2017: 4077-4087. [15] He K M, Zhang X G, Ren S Q, et al. Deep residual learning for image recognition [C]. IEEE conference on computer vision and pattern recognition, IEEE computer society, 2016: 770-778.
|