[1] 肖忠毅. 农业生产数字化转型的实践机制研究[D]. 无锡: 江南大学, 2022.Xiao Zhongyi. Practical mechanism of digital transformation of agricultural production [D]. Wuxi: Jiangnan University, 2022.
[2] 牛霆葳. 基于机器视觉的农田害虫自动识别方法研究[D]. 天津: 天津科技大学, 2015.Niu Tingwei. Study on automatic identification method of agricultural pests based on machine vision [D]. Tianjin: Tianjin University of Science and Technology, 2015.
[3] Larios N, Deng H, Zhang W, et al. Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects [J]. Machine Vision and Applications, 2008, 19(2): 105-123.
[4] Zhu L Q, Zhang Z. Autoclassification of insect images based on color histogram and GLCM [C]. 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery. IEEE, 2010, 6: 2589-2593.
[5] Wang J, Lin C, Ji L, et al. A new automatic identification system of insect images at the order level [J]. KnowledgeBased Systems, 2012, 33: 102-110.
[6] Faithpraise F, Birch P, Young R, et al. Automatic plant pest detection and recognition using kmeans clustering algorithm and correspondence filters [J]. Int. J. Adv. Biotechnol. Res, 2013, 4(2): 189-199.
[7] Xia C, Chon T S, Ren Z, et al. Automatic identification and counting of small size pests in greenhouse conditions with low computational cost [J]. Ecological Informatics, 2015, 29: 139-146.
[8] Wang X F, Huang D S, Xu H.An efficient local ChanVese model for image segmentation [J]. Pattern Recognition, 2010, 43(3): 603-618.
[9] Xie C, Zhang J, Li R, et al. Automatic classification for field crop insects via multipletask sparse representation and multiplekernel learning [J]. Computers and Electronics in Agriculture, 2015, 119: 123-132.
[10] 文斌, 曹仁轩, 杨启良, 等. 改进YOLOv3算法检测三七叶片病害[J]. 农业工程学报, 2022, 38(3): 164-172.
Wen Bin, Cao Renxuan, Yang Qiliang, et al. Detecting leaf disease for Panax notoginseng using an improved YOLOv3 algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 164-172.
[11] 周逸博, 马毓涛, 赵艳茹. 基于YOLOv5s和Android的苹果树皮病害识别系统设计[J]. 广东农业科学, 2022, 49(10): 155-163.
Zhou Yibo, Ma Yutao, Zhao Yanru. Design of mobile app recognition system for apple bark disease based on YOLOv5s and Android [J]. Guangdong Agricultural Sciences, 2022, 49(10): 155-163.
[12] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, 1: 580-587.
[13] Girshick R. Fast RCNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015, 1: 1440-1448.
[14] Ren S, He K, Girshick R, et al. Faster RCNN: Towards realtime object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[15] He K, Gkioxari G, Dollár P, et al. Mask RCNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[16] Dai J, Li Y, He K, et al. RFCN: Object detection via regionbased fully convolutional networks [J]. Advances in Neural Information Processing Systems, 2016, 29.
[17] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[18] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[19] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. European Conference on Computer Vision, 2016: 21-37.
[20] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018, 1: 3-19.
[21] 赵文博, 周德强, 邓干然, 等. 基于改进YOLOv5的甘蔗茎节识别方法[J]. 华中农业大学学报, 2023, 42(1): 268-276.Zhao Wenbo, Zhou Deqiang, Deng Ganran, et al. Sugarcane stem node recognition method based on improved YOLOv5 [J]. Journal of Huazhong Agricultural University, 2023, 42(1): 268-276.
[22] Wan J, Chen B, Yu Y. Polyp detection from colorectum images by using attentive YOLOv5 [J]. Diagnostics, 2021, 11(12): 2264.
[23] 汪斌斌, 杨贵军, 杨浩, 等. 基于YOLO_X和迁移学习的无人机影像玉米雄穗检测[J]. 农业工程学报, 2022, 38(15): 53-62.
Wang Binbin, Yang Guijun, Yang Hao, et al. UAV images for detecting maize tassel based on YOLO_X and transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 53-62.
[24] Xue Z, Lin H, Wang F. A small target forest fire detection model based on YOLOv5 improvement [J]. Forests, 2022, 13(8): 1332.
[25] Redmon J, Farhadi A. Yolov3: An incremental improvement [J]. arXiv Preprint arXiv: 1804.02767, 2018.
[26] Parmar N, Vaswani A, Uszkoreit J, et al. Image transformer [C]. International Conference on Machine Learning, 2018: 4055-4064.
[27] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection [J]. arXiv Preprint arXiv: 2004.10934, 2020.
[28] Yan B, Fan P, Lei X, et al. A realtime apple targets detection method for picking robot based on improved YOLOv5 [J]. Remote Sensing, 2021, 13(9): 1619.
[29] Gevorgyan Z. SIoU Loss: More powerful learning for bounding box regression [J]. arXiv Preprint arXiv:2205.12740, 2022.
|