[1] 柴欣, 朱霖, 戚爱棣, 等. 栝楼属植物化学成分研究进展[J]. 辽宁中医药大学学报, 2013, 15(1): 66-70.
Chai Xin, Zhu Lin, Qi Aidi, et al. Research progress in the chemical constituents of trichosanthes L [J]. Journal of Liaoning University of Traditional Chinese Medicine, 2013, 15(1): 66-70.
[2] 郭书巧, 束红梅, 何晓兰, 等. 江苏省栝楼产业发展现状及对策[J]. 中国瓜菜, 2019, 32(12): 84-87.
[3] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection [J]. arXiv, 2020: 10934.
[4] Girshick R. Fast rcnn [C]. Proceedings of the IEEE/International Conference on Computer Vision, 2015: 1440-1448.
[5] Ren S, He K, Girshick R, et al. Faster RCNN: Towards realtime object detection with region proposal networks [J]. IEEE/Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[7] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[8] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. ArXiv Preprint ArXiv: 1804.02767, 2018.
[9] Bochkovskiy A, Wang C, Liao H M. YOLOv4: Optimal speed and accuracy of object detection [J]. ArXiv Preprint ArXiv: 2004.10934, 2020.
[10] 聂衍文, 杨佳晨, 文慧心, 等. 基于机器视觉的轻量化芒果果面缺陷检测[J]. 食品与机械, 2023, 39(3): 91-95, 240.
Nie Yanwen, Yang Jiachen, Wen Huixin, et al. Light weight detection of mango surface defects based on machine vision [J]. Food & Machinery, 2023, 39(3): 91-95, 240.
[11] Habaragamuwa H, Ogawa Y, Suzuki T, et al. Detecting greenhouse strawberries (mature and immature), using deep convolutional neural network [J]. Engineering in Agriculture, Environment and Food, 2018, 11(3): 127-138.
[12] Nasiri A, TaheriGaravand A, Zhang Y. Imagebased deep learning automated sorting of date fruit [J]. Postharvest Biology and Technology, 2019, 153: 133-141.
[13] 张立杰, 周舒骅, 李娜, 等. 基于改进SSD卷积神经网络的苹果定位与分级方法[J]. 农业机械学报, 2023, 54(6): 223-232.
Zhang Lijie, Zhou Shuhua, Li Na, et al. Apple location and classification based on improved SSD convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 223-232.
[14] 熊俊涛, 韩咏林, 王潇, 等. 基于YOLOv5-Lite的自然环境木瓜成熟度检测方法[J]. 农业机械学报, 2023, 54(6): 243-252.
Xiong Juntao, Han Yonglin, Wang Xiao, et al. Method of maturity detection for papaya fruits in natural environment based on YOLOv5-Lite [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 243-252.
[15] 惠巧娟, 孙婕. 基于多尺度特征度量元学习的玉米叶片病害识别模型研究[J]. 江苏农业科学, 2023, 51(9): 199-206.
Hui Qiaojuan, Sun Jie. Study on maize leaf disease recognition model based on multiscale feature metric metalearning [J]. Jiangsu Agricultural Sciences, 2023, 51(9): 199-206.
[16] T/CACM 1021.152—2018, 中药材商品规格等级—瓜蒌[S].
[17] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE/Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[18] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 1580-1589.
[19] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[20] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[21] Tan M, Pang R, Le Q V. EfficientDet: Scalable and efficient object detection [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[22] Zou Y, Zhao L, Kang Y, et al. Topicoriented spoken dialogue summarization for customer service with saliencyaware topic modeling [C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(16): 14665-14673.
[23] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [J]. International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, 2016, 14(3): 21-37.
|