[1] 赖庭林. 发展油茶产业促进乡村振兴[J]. 农村实用技术, 2021(10): 31-32.
[2] 冯青春, 王秀, 李军辉, 等. 基于高动态范围成像的温室番茄植株图像色彩矫正方法[J]. 农业机械学报, 2020, 51(11): 235-242.
Feng Qingchun, Wang Xiu, Li Junhui, et al. Image color correction method for greenhouse tomato plant based on HDR imaging [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 235-242.
[3] Feng Q, Wang X, Chen J. Method of visually tracking plant mainstem for tomatos robotic management [M]. Advances in Guidance, Navigation and Control. Springer, Singapore, 2022: 2467-2476.
[4] 冯青春, 陈建, 成伟, 等. 面向番茄植株相近色目标识别的多波段图像融合方法[J]. 智慧农业(中英文), 2020, 2(2): 126-134.
Feng Qingchun, Chen Jian, Cheng Wei, et al. Multiband image fusion method for visually identifying tomato plants organs with similar color [J]. Smart Agriculture, 2020, 2(2): 126-134.
[5] Zhao J, Tow J, Katupitiya J. Ontree fruit recognition using texture properties and color data [C]. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005: 263-268.
[6] 贾伟宽, 李倩雯, 张中华, 等. 复杂环境下柿子和苹果绿色果实的优化SOLO分割算法[J]. 农业工程学报, 2021, 37(18): 121-127.
Jia Weikuan, Li Qianwen, Zhang Zhonghua, et al. Optimized SOLO segmentation algorithm for the green fruits of persimmons and apples in complex environments [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 121-127.
[7] Jahanbakhshi A, Momeny M, Mahmoudi M, et al. Classification of sour lemons based on apparent defects using stochastic pooling mechanism in deep convolutional neural networks [J]. Scientia Horticulturae, 2020, 263: 109133.
[8] 石良德. 成熟油茶果识别与定位系统[D]. 长沙: 湖南大学, 2012.
Shi Liangde. Mature oil camellia fruits identification and location system [D]. Changsha: Hunan University, 2012.
[9] 李立君, 李昕, 高自成, 等. 基于偏好免疫网络的油茶果采摘机器人图像识别算法[J]. 农业机械学报, 2012, 43(11): 209-213
Li Lijun, Li Xin, Gao Zicheng, et al. Fruit image recognition based on preference artificial immune net [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 209-213.
[10] 李昕, 李立君, 高自成, 等. 基于偏好人工免疫网络多特征融合的油茶果图像识别[J]. 农业工程学报, 2012, 28(14): 133-137.
Li Xin, Li Lijun, Gao Zicheng, et al. Image recognition of camellia fruit based on preference for aiNET multifeatures integration [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(14): 133-137.
[11] 李立君, 阳涵疆. 基于改进凸壳理论的遮挡油茶果定位检测算法[J]. 农业机械学报, 2016, 47(12): 285-292.
Li Lijun, Yang Hanjiang. Revised detection and localization algorithm for camellia oleifera fruits based on convex hull theory [J]. Journal of Agricultural Machinery, 2016, 47 (12): 285-292.
[12] 汪洋, 李立君, 高自成,等. 基于亮度均匀化的成熟油茶果图像分割研究[J]. 计算机仿真, 2018, 35(9): 369-372, 430.
Wang Yang, Li Lijun, Gao Zicheng, et al. The ripe camellia fruitsimage segmentation based on luminance uniformity. [J] Computer Simulation, 2018, 35(9): 369-372, 430.
[13] 张习之, 李立君. 基于改进卷积自编码机的油茶果图像识别研究[J].林业工程学报, 2019, 4(3): 118-124.
Zhang Xizhi, Li Lijun. Research of image recognition of camellia oleifera fruit based on improved convolutional autoencoder [J]. Journal of Forestry Engineering, 2019, 4(3): 118-124.
[14] 郭振宇, 高国飞. 基于YOLOv4的复杂路口下人车混行检测算法研究[J]. 信息技术与信息化, 2021, 2: 236-240.
[15] 杨晓丽, 段敏, 虞汉年, 等. 基于YOLO算法的车辆实时检测研究[J]. 仪器仪表与分析监测, 2021(1): 7-10.
Yang Xiaoli, Duan Min, Yu Hannian, et al. Research on realtime vehicle detection based on YOLO algorithm [J]. Instrumentation & Analysis & Monitoring, 2021(1): 7-10.
[16] 何旭光, 罗一平, 江磊. 基于YOLO的前方车辆检测[J]. 舰船电子工程, 2021, 41(1): 137-139.
He Xuguang, Luo Yiping, Jiang Lei. Front vehicle detection based on YOLO [J] Naval Electronics Engineering, 2021, 41 (1): 137-139.
[17] 刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237.
Liu Fang, Liu Yukun, Lin Sen, et al. Fast recognition method for tomatoes under complex environments based on improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 229-237.
[18] 熊俊涛, 郑镇辉, 梁嘉恩, 等. 基于改进YOLOv3网络的夜间环境柑橘识别方法[J]. 农业机械学报, 2020, 51(4): 199-206.
Xiong Juntao, Zheng Zhenhui, Liang Jiaen, et al. Citrus detection method in night environment based on improved YOLOv3 network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 199-206.
[19] 何东健, 刘建敏, 熊虹婷, 等. 基于改进YOLOv3模型的挤奶奶牛个体识别方法[J]. 农业机械学报, 2020, 51(4): 250-260.
He Dongjian, Liu Jianmin, Xiong Hongting, et al. Individual identification of dairy cows based on improved YOLOv3 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 250-260.
[20] Devries T, Taylor G W. Improved regularization of convolutional neural networks with cutout[J]. arXiv Preprint arXiv: 170804552, 2017.
[21] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[22] 董文轩, 梁宏涛, 刘国柱, 等. 深度卷积应用于目标检测算法综述[J]. 计算机科学与探索, 2022, 16(5): 1025-1042.
Dong Wenxuan, Liang Hongtao, Liu Guozhu, et al. Review of deep convolution applied to target detection algorithms[J]. Computer Science and Exploration, 2022, 16(5): 1025-1042.
[23] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[24] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector [C]. European Conference on Computer Vision. Springer, Cham, 2016: 21-37.
[25] Bochkovskiy A, Wang C Y, Liao H Y M.Yolov4: Optimal speed and accuracy of object detection [J]. arXiv Preprint arXiv: 2004.10934, 2020.
[26] Ge Z, Liu S, Wang F, et al. Yolox: Exceeding yolo series in 2021 [J]. arXiv Preprint arXiv: 2107.08430, 2021.
|