[1] 李玉琼, 肖樟英, 吴柳根. 油茶产业经济效益分析和发展前瞻[J]. 中国林业, 2011(6): 36.
[2] 刘继展. 温室采摘机器人技术研究进展分析[J]. 农业机械学报, 2017, 48(12): 1-18.
Liu Jizhan. Research progress analysis of robotic harvesting technologies in greenhouse [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 1-18.
[3] 武星, 齐泽宇, 王龙军, 等. 基于轻量化YOLOv3卷积神经网络的苹果检测方法[J]. 农业机械学报, 2020, 51(8): 17-25.
Wu Xing, Qi Zeyu, Wang Longjun, et al. Apple detection method based on LightYOLOv3 convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 17-25.
[4] 傅隆生, 孙世鹏, VázquezArellano Manuel, 等. 基于果萼图像的猕猴桃果实夜间识别方法[J]. 农业工程学报, 2017, 33(2): 199-204.
Fu Longsheng, Sun Shipeng, VázquezArellano Manuel, et al. Kiwifruit recognition method at night based on fruit calyx image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2): 199-204.
[5] Nagle M, Intani K, Romano G, et al. Determination of surface color of ‘all yellow’ mango cultivars using computer vision [J]. International Journal of Agricultural and Biological Engineering, 2016, 9(1): 42-50.
[6] 于慧杰, 李大华, 高强, 等. 自然环境中重叠与遮挡绿苹果图像的识别[J]. 激光杂志, 2020, 41(2): 20-24.
Yu Huijie, Li Dahua, Gao Qiang, et al. Recognition of overlapping and occluding green apple images in natural environment [J]. Laser Journal, 2020, 41(2): 20-24.
[7] 傅隆生, 冯亚利, Elkamil Tola, 等. 基于卷积神经网络的田间多簇猕猴桃图像识别方法[J]. 农业工程学报, 2018, 34(2): 205-211.
Fu Longsheng, Feng Yali, Elkamil Tola, et al. et al. Image recognition method of multicluster kiwifruit in field based on convolutional neural networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 205-211.
[8] 杨福增, 雷小燕, 刘志杰, 等. 基于CenterNet的密集场景下多苹果目标快速识别方法[J]. 农业机械学报, 2022, 53(2): 265-273.
Yang Fuzeng, Lei Xiaoyan, Liu Zhijie, et al. Fast recognition method for multiple apple targets in dense scenes based on CenterNet [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 265-273.
[9] 熊俊涛, 刘振, 汤林越, 等. 自然环境下绿色柑橘视觉检测技术研究[J]. 农业机械学报, 2018, 49(4): 45-52.
Xiong Juntao, Liu Zhen, Tang Linyue, et al. Visual detection technology of green citrus under natural environment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 45-52.
[10] 彭红星, 黄博, 邵园园, 等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J]. 农业工程学报, 2018, 34(16): 155-162.
Peng Hongxing, Huang Bo, Shao Yuanyuan, et al. General improved SSD model for picking object recognition of multiple fruits in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 155-162.
[11] 刘丽娟, 窦佩佩, 王慧. 自然环境下重叠与遮挡苹果图像识别方法研究[J]. 中国农机化学报, 2021, 42(6): 174-181.
Liu Lijuan, Dou Peipei, Wang Hui. Image recognition algorithm research of overlapped apple fruits in the natural environment [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 174-181.
[12] 刘妤, 刘洒, 杨长辉, 等. 基于轮廓曲率和距离分析的重叠柑橘分割与重建[J]. 中国农业科技导报, 2020, 22(8): 93-101.
Liu Shu, Liu Sa, Yang Changhui, et al. Segmentation and reconstruction of overlapping citrus based on contour curvature and distance analysis [J]. Journal of Agricultural Science and Technology, 2020, 22(8): 93-101.
[13] 陈斌, 饶洪辉, 王玉龙, 等. 基于FasterRCNN的自然环境下油茶果检测研究[J]. 江西农业学报, 2021, 33(1): 67-70.
Chen Bin, Rao Honghui, Wang Yulong, et al. Study on detection of Camellia fruit in natural environment based on FasterRCNN [J]. Acta Agriculturae Jiangxi, 2021, 33(1): 67-70.
[14] 张习之, 李立君. 基于改进卷积自编码机的油茶果图像识别研究[J]. 林业工程学报, 2019, 4(3): 118-124.
Zhang Xizhi, Li Lijun. Research of image recognition of Camellia oleifera fruit based on improved convolutional autoencoder [J]. Journal of Forestry Engineering, 2019, 4(3): 118-124.
[15] 李立君, 阳涵疆. 基于改进凸壳理论的遮挡油茶果定位检测算法[J]. 农业机械学报, 2016, 47(12): 285-292, 346.
Li Lijun, Yang Hanjiang. Revised detection and localization algorithm for Camellia oleifera fruits based on convex hull theory [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 285-292, 346.
[16] 吴雪, 宋晓茹, 高嵩, 等. 基于数据增强的卷积神经网络火灾识别[J]. 科学技术与工程, 2020, 19(3): 1113-1117.
Wu Xue, Song Xiaoru, Gao Song, et al. Convolution neural network based on data enhancement for fire identification [J]. Science Technology and Engineering, 2020, 19(3): 1113-1117.
[17] 温桂璋, 李丹. 基于YOLOV4-Tiny的坠楼检测预警应用[J]. 网络安全技术与应用, 2022(2): 45-46.
Wen Guizhang, Li Dan. Application of falling detection and early warning based on YOLOV4-Tiny [J]. Network Security Technology & Application, 2022(2): 45-46.
[18] 王长清, 贺坤宇, 蒋帅. 改进YOLOv4-tiny网络的狭小空间目标检测方法[J]. 计算机工程与应用, 2022(10): 240-248.
Wang Changqing, He Kunyu, Jiang Shuai. Narrow space object detection method by improved YOLOv4-tiny network [J]. Computer Engineering and Applications, 2022(10): 240-248.
|