[1] 罗浩伦, 冯泽霖, 冉钟南, 等. 基于VGG16网络的茶叶嫩芽自动检测研究[J]. 农业与技术, 2020, 40(1): 15-17.
[2] 孙红, 李松, 李民赞, 等. 农业信息成像感知与深度学习应用研究进展[J]. 农业机械学报, 2020, 51(5): 1-17.
Sun Hong, Li Song, Li Minzan, et al. Research progress of image sensing and deep learning in agriculture [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 1-17.
[3] Tao W, Kunming Z, Wu Z, et al. Tea picking point detection and location based on Mask RCNN [J]. Information Processing in Agriculture, 2023, 10(2): 267-275.
[4] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2017: 6517-6525.
[5] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 779-788.
[6] Rdje N, Gunnar Ellingsen, Tone Bratteteig, et al. ECSCW 2015: Proceedings of the 14th European Conference on Computer Supported Cooperative Work [C]. Springer, Cham: 2015.
[7] Xu Wenkai, Zhao Longgang, Li Juan, et al. Detection and classification of tea buds based on deep learning [J]. Computers and Electronics in Agriculture, 2022, 192.
[8] 胡根生, 吴继甜, 鲍文霞, 等. 基于改进YOLOv5网络的复杂背景图像中茶尺蠖检测[J]. 农业工程学报, 2021, 37(21): 191-198.
Hu Gensheng, Wu Jitian, Bao Wenxia, et al. Detection of ectropis oblique in complex background images using improved YOLOv5 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21): 191-198.
[9] 方梦瑞, 吕军, 阮建云, 等. 基于改进YOLOv4tiny的茶叶嫩芽检测模型[J]. 茶叶科学, 2022, 42(4): 549-560.
Fang Mengrui, Lü Jun, Ruan Jianyun, et al. A tea sprout detection model based on improved YOLOv4 tiny [J]. Tea Science, 2022, 42 (4): 549-560
[10] 许宝阳, 高延峰. 基于Faster RCNN深度学习的茶叶嫩芽多维度识别及其性能分析[J]. 农业装备与车辆工程, 2023, 61(2): 19-24.
Xu Baoyang, Gao Yanfeng. Multidimensional recognition and performance analysis of tea tender buds based on Faster RCNN deep learning [J]. Agricultural Equipment and Vehicle Engineering, 2023, 61 (2): 19-24.
[11] 李旭, 李振海, 杨海滨, 等. 基于Faster RCNN网络的茶叶嫩芽检测[J]. 农业机械学报, 2022, 53(5): 217-224.
Li Xu, Li Zhenhai, Yang Haibin, et al. Tea bud detection based on faster RCNN network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 217-224.
[12] 姜苗苗, 问美倩, 周宇, 等. 基于颜色因子与图像融合的茶叶嫩芽检测方法[J]. 农业装备与车辆工程, 2020, 58(10): 44-47.
Jiang Miaomiao, Wen Meiqian, Zhou Yu, et al. Tea bud detection method based on color factor and image fusion [J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(10): 44-47.
[13] 汪建. 结合颜色和区域生长的茶叶图像分割算法研究[J]. 茶叶科学, 2011, 31(1): 72-77.
Wang Jian. Segmentation algorithm of tea combined with the color and region growing [J]. Journal of Tea Science, 2011, 31(1): 72-77.
[14] 龙樟, 姜倩, 王健, 等. 茶叶嫩芽视觉识别与采摘点定位方法研究[J]. 传感器与微系统, 2022, 41(2): 39-41.
Long Zhang, Jiang Qian, Wang Jian, et al. Research on method of tea flushes vision recognition and picking point localization [J].Transducer and Microsystem Technologies, 2022, 41(2): 39-41.
[15] 周巧黎, 马丽, 曹丽英, 等. 基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别[J]. 智慧农业(中英文), 2022, 4(1): 47-56.
Zhou Qiaoli, Ma Li, Cao Liying, et al. Identification of tomato leaf diseases based on improved lightweight convolutional neural networks MobileNetV3 [J]. Smart Agriculture, 2022, 4(1): 47-56.
[16] 张志远, 罗铭毅, 郭树欣, 等. 基于改进YOLO v5的自然环境下樱桃果实识别方法[J]. 农业机械学报, 2022, 53(S1): 232-240.
Zhang Zhiyuan, Luo Mingyi, Guo Shuxin, et al. Cherry fruit detection method in natural scene based on improved YOLO v5 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S1): 232-240.
[17] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
[18] Neubeck A, Van Gool L. Efficient nonmaximum suppression [C]. 18th International Conference on Pattern Recognition (ICPR06). Hong Kong: IEEE, 2006, 3: 850-855.
[19] 刘刚, 冯彦坤, 康熙. 基于改进YOLO v4的生猪耳根温度热红外视频检测方法[J]. 农业机械学报, 2023, 54(2): 240-248.
Liu Gang, Feng Yankun, Kang Xi. Detection method of pig ear root temperature based on improved YOLOv4 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(2): 240-248.
[20] Syazwany N S, Nam J H, Lee S C. MMBiFPN: Multimodality fusion network with BiFPN for MRI brain tumor segmentation [J]. IEEE Access, 2021: 160708-160720.
[21] 王卓, 王健, 王枭雄, 等. 基于改进YOLO v4的自然环境苹果轻量级检测方法[J]. 农业机械学报, 2022, 53(8): 294-302.
Wang Zhuo, Wang Jian, Wang Xiaoxiong, et al. Lightweight realtime apple detection method based on improved YOLOv4 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 294-302.
[22] Wang J, Luan Z, et al. Superpixel segmentation with squeezeandexcitation networks [J]. Signal, Image and Video Processing, 2022, 16(5): 1-8.
[23] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV). 2018: 3-19.
[24] Algorithms. Recent findings from Shanghai Jiao tong University has provided new information about algorithms (Detecting tomatoes in greenhouse scenes by combining AdaBoost classifier and colour analysis) [J]. Journal of Engineering, 2016: 795.
[25] 夏烨, 雷哓晖, 祁雁楠, 等. 基于改进GhostYOLOv5sBiFPN算法检测梨树花序 [J]. 智慧农业(中英文), 2022, 4(3): 108-119.
Xia Ye, Lei Xiaohui, Qi Yannan, et al. Detection of pear inflorescence based on improved GhostYOLOv5sBiFPN algorithm [J]. Smart Agriculture, 2022, 4(3): 108-119.
[26] Guo C, Fan B, Zhang Q, et al. Improving multiscale feature learning for object detection [J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020.
[27] Jiang Z, Zhao L, Li S, et al. Realtime object detection method based on improved YOLOv4tiny [J]. arXiv Preprint, 2020, arXiv: 2011.04244.
[28] Shaoqing R, Kaiming H, Ross G, et al. Faster RCNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
(上接第167页)
[13] Dechant C, WiesnerHanks T, Chen S, et al. Automated identification of northern leaf blightinfected maize plants from field imagery using deep learning [J]. Phytopathology, 2017: 1426-1432.
[14] 陈娟, 陈良勇, 王生生, 等. 基于改进残差网络的园林害虫图像识别[J]. 农业机械学报, 2019, 50(5): 187-195.
Chen Juan, Chen Liangyong, Wang Shengsheng, et al. Pest image recognition of garden based on improved residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 187-195.
[15] Oksuz K, Cam B C, Akbas E, et al. Rank & sort loss for object detection and instance segmentation [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3009-3018.
[16] Li Y, Li S, Du H, et al. YOLOACN: Focusing on small target and occluded object detection [J]. IEEE Access, 2020, 8: 227288-227303.
[17] Girshick R. Fast rcnn [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[18] Uijlings J R R, Van De Sande K E A, Gevers T, et al. Selective search for object recognition [J]. International Journal of Computer Vision, 2013, 104: 154-171.
[19] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[20] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv Preprint arXiv: 1409.1556, 2014.
[21] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[22] 方帅, 金忍, 于磊, 等. 一种基于RGBD图像的似物性采样算法[J]. 图学学报, 2015, 36(6): 931-936.
Fang Shuai, Jin Ren, Yu Lei, et al. Object proposals from RGBD images [J]. Journal of Graphics, 2015, 36(6): 931-936.
[23] Szegedy C, Ioffe S, Vanhoucke V, et al. Inceptionv4, inceptionresnet and the impact of residual connections on learning [C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1).
[24] Hughes D, Salathé M. An open access repository of images on plant health to enable the development of mobile disease diagnostics [J]. arXiv Preprint arXiv: 1511.08060, 2015.
|