[1] 黄家雄, 黄琳, 吕玉兰, 等. 中国咖啡产业发展前景分析[J]. 云南农业科技, 2018(6): 4-7.
Huang Jiaxiong, Huang Lin, Lü Yulan, et al. Analysis of development prospect of coffee sector in China [J]. Yunnan Agricultural Science and Technology, 2018(6): 4-7.
[2] 胡荣锁, 方乐天, 况沁蕊, 等. 云南临沧产区咖啡干香感官特征解析及杯品质量分析[J]. 食品科学, 2021, 42(20): 180-187.
Hu Rongsuo, Fang Letian, Kuang Qinrui, et al. Sensory characteristics of dry aroma and cupping quality of coffee from Lincang, Yunnan [J]. Food Science, 2021, 42(20): 180-187.
[3] Khuwijitjaru P. Near infrared spectroscopy research performance in food science and technology [J]. NIR News, 2018, 29(3): 12-14.
[4] Gomes W P C, Gonalves L, da Silva C B, et al. Application of multispectral imaging combined with machine learning models to discriminate special and traditional green coffee [J]. Computers and Electronics in Agriculture, 2022, 198: 107097.
[5] 张珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021, 26(10): 2305-2325.
Zhang Ke, Feng Xiaohan, Guo Yurong, et al. Overview of deep convolutional neural networks for image classification [J]. Journal of Image and Graphics, 2021, 26(10): 2305-2325.
[6] 刘云玲, 张天雨, 姜明, 等. 基于机器视觉的葡萄品质无损检测方法研究进展[J]. 农业机械学报, 2022, 53(S1): 299-308.
Liu Yunling, Zhang Tianyu, Jiang Ming, et al. Review on nondestructive detection methods of grape quality based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S1): 299-308.
[7] 赵辉, 乔艳军, 王红君, 等. 基于双通道注意力机制的ResNet果实外观品质分类[J]. 光电子·激光, 2022, 33(6): 643-651.
Zhao Hui, Qiao Yanjun, Wang Hongjun, et al. ResNet fruit appearance quality classification based on dual channel attention mechanism [J]. Journal of Optoelectronics·Laser, 2022, 33(6): 643-651.
[8] 叶云, 赵小娟, 姜晟. 基于深度学习的荔枝虫害识别技术的应用与实现[J]. 中国农业信息, 2022, 34(4): 30-37.
Ye Yun, Zhao Xiaojuan, Jiang Sheng. Application and realization of litchi pest identification technology based on deep learning [J]. China Agricultural Informatics, 2022, 34(4): 30-37.
[9] Huang N F, Chou D L, Lee C A, et al. Smart agriculture: Realtime classification of green coffee beans by using a convolutional neural network [J]. IET Smart Cities, 2020, 2(4): 167-172.
[10] Adiwijaya N O, Romadhon H I, Putra J A, et al. The quality of coffee bean classification system based on color by using knearest neighbor method [C]. Journal of Physics: Conference Series. IOP Publishing, 2022, 2157(1): 012034.
[11] 赵玉清, 杨慧丽, 张悦, 等. 基于特征组合与SVM的小粒种咖啡缺陷生豆检测[J]. 农业工程学报, 2022, 38(14): 295-302.
Zhao Yuqing, Yang Huili, Zhang Yue, et al. Detection of defective Arabica green coffee beans based on feature combination and SVM [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(14): 295-302.
[12] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[13] Febriana A, Muchtar K, Dawood R, et al. “USKCOFFEE Dataset: A multiclass green arabica coffee bean dataset for deep learning” [C]. In 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom). IEEE, 2022.
[14] 郑远攀, 李广阳, 李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019, 55(12): 20-36.
Zheng Yuanpan, Li Guangyang, Li Ye. Survey of application of deep learning in image recognition [J]. Computer Engineering and Applications, 2019, 55(12): 20-36.
[15] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[16] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[17] 李书琴, 陈聪, 朱彤, 等. 基于轻量级残差网络的植物叶片病害识别[J]. 农业机械学报, 2022, 53(3): 243-250.
Li Shuqin, Chen Cong, Zhu Tong, et al. Plant leaf disease identification based on lightweight residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 243-250.
[18] 郑光, 魏家领, 任艳娜, 等. 基于深度可分离与空洞卷积的轻量化小麦生育进程监测模型研究[J]. 江苏农业科学, 2022, 50(20): 226-232.
|