[1] 贾玉琴. 甘肃省设施农业和蔬菜产业的发展现状、潜力与对策分析[J]. 中国瓜菜, 2023, 36(9): 144-150.
Jia Yuqin. Development status, potential and countermeasure analysis of facility agriculture and vegetable industry in Gansu [J]. China Cucurbits and Vegetables, 2023, 36(9): 144-150.
[2] 赵敬, 杨化伟, 刘光辉, 等. 我国果蔬采摘机器人技术发展现状及展望[J]. 农业装备与车辆工程, 2023, 61(7): 23-28.
Zhao Jing, Yang Huawei, Liu Guanghui, et al. Development status and prospects of fruit and vegetable picking robots technology in China[J].Agricultural Equipment & Vehicle Engineering, 2023, 61(7): 23-28.
[3] 戴军. 机器视觉技术在瓜菜检测应用中的研究进展[J]. 中国瓜菜, 2023, 36(11): 1-9.
Dai Jun. Research progress of machine vision technology in the detection of cucurbits and vegetables [J]. China Cucurbits and Vegetables, 2023, 36(11): 1-9.
[4] 冯俊惠, 李志伟, 戎有丽, 等. 基于改进Hough圆变换算法的成熟番茄果实识别[J]. 中国农机化学报, 2021, 42(4): 190-196.
Feng Junhui, Li Zhiwei, Rong Youli, et al. Identification of mature tomatoes based on an algorithm of modified circular Hough transform [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 190-196.
[5] 金超杞, 梁喜凤, 章艳, 等. 基于Matlab的番茄果实串检测提取[J]. 江苏农业科学, 2018, 46(8): 209-211.
Jin Chaoqi, Liang Xifeng, Zhang Yan, et al. Tomato fruit string detection and extraction based on Matlab [J] Jiangsu Agricultural Science, 2018, 46 (8): 209-211.
[6] 梁晓婷, 庞琦, 杨一, 等. 基于YOLOv4模型剪枝的番茄缺陷在线检测[J]. 农业工程学报, 2022, 38(6): 283-292.
Liang Xiaoting, Pang Qi, Yang Yi, et al. Online detection of tomato defects based on YOLOv4 model pruning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 283-292.
[7] Bhagya C, Shyna A. An overview of deep learning based object detection techniques [C]. 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT). IEEE, 2019: 1-6.
[8] Jiao L, Zhang F, Liu F, et al. A survey of deep learningbased object detection[J]. IEEE access, 2019, 7: 128837-128868.
[9] Hary C, Mandala S. Object detection analysis study in images based on deep learning algorithm [C]. 2022 International Conference on Data Science and Its Applications (ICoDSA). IEEE, 2022: 226-231.
[10] Zhou Mingzhe. Research advanced in deep learning object detection [C]. 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Dalian, China, 2022: 1318-1322.
[11] 吕志远, 张付杰, 魏晓明, 等. 采用组合增强的YOLOXViT协同识别温室内番茄花果[J]. 农业工程学报, 2023, 39(4): 124-134.
Lü Zhiyuan, Zhang Fujie, Wei Xiaoming, et al. Synergistic recognition of tomato flowers and fruits in greenhouse using combination enhancement of YOLOXViT [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(4): 124-134.
[12] 李天华, 孙萌, 丁小明, 等. 基于YOLO v4+HSV的成熟期番茄识别方法[J]. 农业工程学报, 2021, 37(21): 183-190.
Li Tianhua, Sun Meng, Ding Xiaoming, et al. Tomato recognition method at the ripening stage based on YOLO v4 and HSV [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21): 183-190.
[13] 杨坚, 钱振, 张燕军, 等. 采用改进YOLOv4tiny的复杂环境下番茄实时识别[J]. 农业工程学报, 2022, 38(9): 215-221.
Yang Jian, Qian Zhen, Zhang Yanjun, et al. Realtime recognition of tomatoes in complex environments based on improved YOLOv4tiny [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 215-221.
[14] 何斌, 张亦博, 龚健林, 等. 基于改进YOLO v5的夜间温室番茄果实快速识别[J]. 农业机械学报, 2022, 53(5): 201-208.
He Bin, Zhang Yibo, Gong Jianlin, et al. Fast recognition of tomato fruit in greenhouse at night based on improved YOLO v5 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 201-208.
[15] 朱智惟. 番茄采摘机器人果实识别与定位技术研究[D]. 合肥: 合肥工业大学, 2022.
Zhu Zhiwei. Tomato picking robot fruit recognition and positioning technology research [D]. Hefei: Hefei University of Technology, 2022.
[16] 王海楠, 弋景刚, 张秀花. 番茄采摘机器人识别与定位技术研究进展[J]. 中国农机化学报, 2020, 41(5): 188-196.
Wang Hainan, Yi Jinggang, Zhang Xiuhua, et al. Research progress on recognition and localization technology of tomato picking robot [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(5): 188-196.
[17] Han W, Hao W, Sun J, et al. Tomatoes maturity detection approach based on YOLOv5 and attention mechanisms [C]. 2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT). IEEE, 2022: 1363-1371.
[18] 代国威, 樊景超, 胡林. 采用天气增强与八度卷积改进YOLOv5的番茄检测模型构建[J]. 山东农业科学, 2022, 54(11): 138-149.
Dai Guowei, Fan Jingchao, Hu Lin. Improved tomato detection model construction based on YOLOv5 using weather augmentation and octave convolution [J]. Shandong Agricultural Sciences, 2022, 54(11): 138-149.
[19] 郎松, 曹选, 张艳微, 等. 融合改进YOLOv5算法的图像全站仪全自动测量方法[J]. 仪器仪表学报, 2022, 43(5): 120-127.
Lang Song, Cao Xuan, Zhang Yanwei, et al. Fully automated measurement method of image total station based on the improved YOLOv5 algorithm [J]. Chinese Journal of Scientific Instrument, 2022, 43(5): 120-127.
[20] 彭继慎, 孙礼鑫, 王凯, 等. 基于模型压缩的EDYOLO电力巡检无人机避障目标检测算法[J]. 仪器仪表学报, 2021, 42(10): 161-170.
Peng Jishen, Sun Lixin, Wang Kai, et al. EDYOLO power inspection UAV obstacle avoidance target detection algorithm based on model compression [J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 161-170.
[21] Hao K, Chen G, Zhao L, et al. An insulator defect detection model in aerial images based on multiscale feature pyramid network [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
[22] Khalfaoui A, Badri A, Mourabit I E L. Comparative study of YOLOv3 and YOLOv5s performances for realtime person detection [C]. 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). IEEE, 2022: 1-5.
[23] Li B, Hou Y, Che W. Data augmentation approaches in natural language processing: A survey [J]. Ai Open, 2022, 3: 71-90.
[24] Zhang Y F, Ren W, Zhang Z, et al. Focal and efficient IOU loss for accurate bounding box regression [J]. Neurocomputing, 2022, 506: 146-157.
[25] Zheng Z, Wang P, Ren D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation [J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
[26] Loss G Z S I U. More powerful learning for bounding box regression [J]. arXiv Preprint arXiv: 2205.12740, 2022.
[27] Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[28] Tong Z, Chen Y, Xu Z, et al. WiseIoU:bounding box regression loss with dynamic focusing mechanism. arXiv 2023[J]. arXiv preprint arXiv:2301.10051.
|