English

中国农机化学报

中国农机化学报 ›› 2023, Vol. 44 ›› Issue (11): 162-168.DOI: 10.13733/j.jcam.issn.2095-5553.2023.11.024

• 农业智能化研究 • 上一篇    下一篇

基于改进YOLOv5的苹果采摘机器人多目标识别技术研究

寇雷雷1,张红娜2   

  • 出版日期:2023-11-15 发布日期:2023-12-07
  • 基金资助:
    吉林省教育厅科学研究资助项目(JJKH20220897JY);内蒙古自治区重点研发和成果转化计划项目(2022YFSJ0037);吉林省高职教育教学指导项目(2022—DZXXY—005)

Research on multitarget recognition technology of apple picking robot based on improved YOLOv5

Kou Leilei1, Zhang Hongna2   

  • Online:2023-11-15 Published:2023-12-07

摘要: 针对采摘机器人多目标检测影响因素多、识别准确率低等问题,为给采摘机械手提供有效的视觉引导,提出一种改进YOLOv5目标识别网络模型。首先,在YOLOv5s的基础上利用改进Ghost模块替代CSP模块,以减少模型计算量,使模型更为轻量化。考虑到预测框与目标框的横纵比问题,用CIoU_Loss替换GIoU_Loss作为损失函数,提高目标回归的稳定性。采用DSPP模块来代替原始的SPP模块进行池化操作,以解决SPP特征信息丢失问题,提高目标检测的准确性;然后,利用该模型对苹果图像样本进行训练与评价,分析模型性能的可靠性与可行性;最后,对数据集进行识别测试,并根据不同评价指标进行对比分析,验证所建模型的优越性。研究结果表明,所提出的改进YOLOv5网络模型具有识别准确性高、抗干扰能力强、检测速度快的特点。与其他模型相比,精确率最高提升8.4%,召回率最高提升5.1%,mAP最高提升10.3%。

关键词: 苹果, 多目标识别, 采摘机器人, 神经网络

Abstract: Aiming at the issues of multiple influencing factors and low recognition accuracy in multi target detection of harvesting robots, an improved YOLOv5 object recognition network model is proposed to provide effective visual guidance for harvesting robots. Firstly, based on YOLOv5s, an improved Ghost module is used to replace the CSP module to reduce the computational complexity of the model and make it more lightweight. Considering the aspect ratio between the prediction box and the target box, CIoU_Loss is replaced by GIoU_Loss as a loss function to improve the stability of target regression. DSPP module is used to replace the original SPP module for pooling operation to solve the problem of SPP feature information loss and improve the accuracy of object detection. Then, the model is used to train and evaluate apple image samples,to analyze the reliability and feasibility of the models performance. Finally, identification testing is conducted on the dataset and comparative analysis is conducted based on different evaluation indicators to verify the superiority of the constructed model. The research results indicate that the proposed improved YOLOv5 network model has the characteristics of high recognition accuracy, strong antiinterference ability, and fast detection speed. Compared with the other models, the accuracy rate is up to 8.4%, the recall rate is up to 5.1%, and the mAP rate is up to 10.3%.

Key words: apple, multitarget recognition, picking robot, neural network

中图分类号: