[1] 王飞涛, 樊春春, 李兆东, 等. 机器人在设施农业领域应用现状及发展趋势分析[J]. 中国农机化学报, 2020, 41(3): 93-98, 120.
Wang Feitao, Fan Chunchun, Li Zhaodong, et al. Application status and development trend of facility agriculture [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(3): 93-98, 120.
[2] 宋怀波, 尚钰莹, 何东健. 果实目标深度学习识别技术研究进展[J]. 农业机械学报, 2023, 54(1): 1-19.
Song Huaibo, Shang Yuying, He Dongjian. Review on deep learning technology for fruit target recognition [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 1-19.
[3] 魏冉, 裴悦琨, 姜艳超, 等. 基于改进Faster R-CNN模型的樱桃缺陷检测[J]. 食品与机械, 2021, 37(10): 98-105, 201.
Wei Ran, Pei Yuekun, Jiang Yanchao, et al. Detection of cherry defects based on improved Faster R-CNN model [J]. Food & Machinery, 2021, 37(10): 98-105, 201.
[4] 岳有军, 田博凯, 王红君, 等. 基于改进Mask RCNN的复杂环境下苹果检测研究[J]. 中国农机化学报, 2019, 40(10): 128-134.
Yue Youjun, Tian Bokai, Wang Hongjun, et al. Research on apple detection in complex environment based on improved Mask RCNN [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(10): 128-134.
[5] 李辉, 严康华, 景浩, 等. 基于改进SSD的苹果叶部病理检测识别[J]. 传感器与微系统, 2022, 41(10): 134-137.
Li Hui, Yan Kanghua, Jing Hao, et al. Apple leaf pathology detection and recognition based on improved SSD [J]. Transducer and Microsystem Technologies, 2022, 41(10): 134-137.
[6] 章倩丽, 李秋生, 胡俊勇, 等. 基于PP-YOLO改进算法的脐橙果实实时检测[J]. 北京联合大学学报, 2022, 36(4): 58-66.
Zhang Qianli, Li Qiusheng, Hu Junyong, et al. Realtime detection of navel orange fruit based on improved PP-YOLO algorithm [J]. Journal of Beijing Union University, 2022, 36(4): 58-66.
[7] 张曼, 李杰, 丁荣莉, 等. 基于改进YOLO-V2算法的遥感图像目标检测技术研究[J]. 计算机科学, 2020, 47(S1): 176-180.
Zhang Man, Li Jie, Ding Rongli, et al. Remote sensing image object detection technology based on improved YOLO-V2 algorithm [J]. Computer Science, 2020, 47(S1): 176-180.
[8] Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model [J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
[9] 柳长源, 王琪, 毕晓君. 多目标小尺度车辆目标检测方法[J]. 控制与决策, 2021, 36(11): 2707-2712.
Liu Changyuan, Wang Qi, Bi Xiaojun. Multitarget and smallscale vehicle target detection method [J]. Control and Decision, 2021, 36(11): 2707-2712.
[10] 范晓飞, 王林柏, 刘景艳, 等. 基于改进YOLOv4的玉米种子外观品质检测方法[J]. 农业机械学报, 2022, 53(7): 226-233.
Fan Xiaofei, Wang Linbai, Liu Jingyan, et al. Corn seed appearance quality estimation based on improved YOLOv4 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 226-233.
[11] 潘惠苹, 王敏琴, 张福泉. 基于优化YOLO-V4的交通标志检测识别方法[J]. 计算机科学, 2022, 49(11): 179-184.
Pan Huiping, Wang Minqin, Zhang Fuquan. Traffic sign detection and recognition method based on optimized YOLO-V4 [J]. Computer Science, 2022, 49(11): 179-184.
[12] 汪颖, 王峰, 李玮, 等. 用于复杂环境下果蔬检测的改进YOLOv5算法研究[J]. 中国农机化学报, 2023, 44(1): 185-191.
Wang Ying, Wang Feng, Li Wei, et al.Study on improved YOLOv5 algorithm for fruit and vegetable detection in complex environments [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 185-191.
[13] 魏天宇, 柳天虹, 张善文, 等. 基于改进YOLOv5s的辣椒采摘机器人识别定位方法[J]. 扬州大学学报(自然科学版), 2023, 26(1): 61-69.
Wei Tianyu, Liu Tianhong, Zhang Shanwen, et al. Research on pepper picking robot recognition and positioning method based on improved YOLOv5s [J]. Journal of Yangzhou University (Natural Science Edition), 2023, 26(1): 61-69.
[14] 李光明, 弓皓斌, 袁凯. 基于轻量化YOLOv5s的花椒簇检测研究[J]. 中国农机化学报, 2023, 44(4): 153-158.
Li Guangming, Gong Haobin, Yuan Kai. Research on lightweight pepper cluster detection based on YOLOv5s [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 153-158.
[15] Yan B, Fan P, Lei X Y, et al. A realtime apple targets detection method for picking robot based on improved YOLOv5 [J]. Remote Sensing, 2021, 13(9): 1619.
[16] 闫彬, 樊攀, 王美茸, 等. 基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别[J]. 农业机械学报, 2022, 53(9): 28-38.
Yan Bin, Fan Pan, Wang Meirong, et al. Realtime apple picking pattern recognition for picking robot based on improved YOLOv5m [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 28-38.
[17] 李扬, 腰彩红, 高冠群, 等. 一种基于YOLOv5的草莓多阶段目标检测方法[J]. 天津农业科学, 2022, 28(11): 81-90.
Li Yang, Yao Caihong, Gao Guanqun, et al. A target detection method based on YOLOv5 in multistage of strawberry growing period [J]. Tianjin Agricultural Sciences, 2022, 28(11): 81-90.
[18] 黄彤镔, 黄河清, 李震, 等. 基于YOLOv5改进模型的柑橘果实识别方法[J]. 华中农业大学学报, 2022, 41(4): 170-177.
Huang Tongbin, Huang Heqing, Li Zhen, et al. Citrus fruit recognition method based on the improved model of YOLOv5 [J]. Journal of Huazhong Agricultural University, 2022, 41(4): 170-177.
[19] 杨其晟, 李文宽, 杨晓峰, 等. 改进YOLOv5的苹果花生长状态检测方法[J]. 计算机工程与应用, 2022, 58(4): 237-246.
Yang Qisheng, Li Wenkuan, Yang Xiaofeng, et al. Improved YOLOv5 method for detecting growth status of apple flowers [J]. Computer Engineering and Applications, 2022, 58(4): 237-246.
[20] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
|