English

中国农机化学报

中国农机化学报 ›› 2023, Vol. 44 ›› Issue (6): 168-175.DOI: 10.13733/j.jcam.issn.2095-5553.2023.06.024

• 农业智能化研究 • 上一篇    下一篇

基于NB-IoT技术的智能农业环境监测系统设计

陈维娜,杨忠,顾姗姗,唐玉娟,王逸之   

  1. 金陵科技学院,南京市,211169
  • 出版日期:2023-06-15 发布日期:2023-07-10
  • 基金资助:
    国家自然科学基金项目(61803188);江苏省高校自然科学研究项目(18KJB413003);金陵科技学院高层次人才科研启动基金(jit-b-201713、jit-b-201816、jit-b-202029)

Design of intelligent agricultural environment monitoring system based on NB-IoT technology

Chen Weina, Yang Zhong, Gu Shanshan, Tang Yujuan, Wang Yizhi   

  • Online:2023-06-15 Published:2023-07-10
  • Supported by:


摘要: 在农业生产管理中,利用农业物联网可以高效地获取农作物的生长环境信息,但是农田中终端节点之间分布距离较远,同时受限于接入容量,设备功耗等,从而给农作物环境监测带来一定的困扰。针对智慧农业存在的问题,利用NB-IoT技术组建无线传感网络对农作物生长环境进行实时采集和监测,同时研究基于多传感器数据融合方法,利用自适应加权平均融合以及神经网络方法对各区域内的传感器数据进行融合,从而得到农作物环境状况的综合判断。该方法可以针对不同农作物及其生存环境需求,有效提升农作物生存状态预测精度,本方法相比传统方法预测误差降低45%以上,验证本方法的有效性和优越性。

关键词: NB-IoT技术, 智慧农业, 神经网络, 环境监测

Abstract: In agricultural production management, the agricultural Internet of Things can be used to efficiently obtain the growth environment information of crops. However, the distribution distance between terminal nodes in farmland is relatively long. It is limited by the access capacity and equipment power consumption, which brings difficulties to crop environment monitoring. To address the problems exiting in smart agriculture, this paper uses NB-IoT technology to build a wireless sensor network to collect and monitor the crop growth environment in realtime. Furthermore, a method based on multisensor data fusion that uses adaptive weighted average fusion and neural network methods to fuse the sensor data is studied. This approach yields a comprehensive assessment of the crop environment. This method can effectively improve the prediction accuracy of crop status. Compared with the traditional method, the prediction error is reduced by more than 45%, which verifies the effectiveness and superiority of this method.


Key words: NB-IoT technology, smart agriculture, neural network, environmental monitoring

中图分类号: