[1] 吴华成. 茶叶褐色叶斑病的综合防治技术[J]. 农业与技术, 2015, 35(16): 113-114.
[2] 汪建, 杜世平, 王开明. 茶叶的计算机识别应用研究[J]. 安徽农业科学, 2006, 34(10): 2139-2140.
Wang Jian, Du Shiping, Wang Kaiming. Research on application of computer vision in the identification of tea [J]. Journal of Anhui Agricultural Sciences, 2006, 34(10): 2139-2140.
[3] 汪建, 杜世平. 基于颜色和形状的茶叶计算机识别研究[J]. 茶叶科学, 2008(6): 420-424.
Wang Jian, Du Shiping. Identification investigation of tea based on HSI color space and figure [J]. Journal of Tea Science, 2008, 28(6): 420-424.
[4] 杨福增, 杨亮亮, 杨青, 等. 基于颜色和形状特征的茶叶嫩芽识别方法[J]. 农业机械学报, 2009, 40(S1): 119-123.
Yang Fuzeng, Yang Liangliang, Yang Qing, et al. Recognition of the tea sprout based on color and shape features [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(S1): 119-123.
[5] 谭和平, 徐海卫, 胡长安, 等. 基于视觉词袋模型的茶机智能化控制方法[J]. 中国测试, 2014, 40(6): 84-87.
Tan Heping, Xu Haiwei, Hu Changan, et al. Tea machine intelligent control method based on BOVW and BP neural network [J]. China Measurement & Test, 2014, 40(6): 84-87.
[6] 李博, 江朝晖, 洪石兰, 等. 基于边缘智能的茶叶病害识别[J]. 中国农机化学报, 2022, 43(6): 175-180.
Li Bo, Jiang Chaohui, Hong Shilan, et al. Tea leaf diseases recognition based on edge intelligence [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 175-180.
[7] 叶荣, 马自飞, 高泉, 等. 基于改进YOLOv5sECAASFF算法的茶叶病害目标检测[J]. 中国农机化学报, 2024, 45(1): 244-251.
Ye Rong, Ma Zifei, Gao Quan, et al. Target detection of tea disease based on improved YOLOv5sECAASFF algorithm [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 244-251.
[8] 邵明. 基于计算机视觉的龙井茶叶嫩芽识别方法研究[D]. 杭州: 中国计量学院, 2013.
Shao Ming. Research on computer vision based recognition methods of Longjing tea sprouts [D]. Hangzhou: China Jiliang University, 2013.
[9] 蒋帆. 基于高光谱和图像技术的龙井茶叶品质检测方法研究[D]. 杭州: 浙江工业大学, 2010.
Jiang Fan. Inspection of longjing tea quality by using multisensor information fusion based on hyper spectral analysis and image manipulation [D]. Hangzhou: Zhejiang University of Technology, 2010
[10] 王琨, 刘大茂. 基于深度学习的茶叶状态智能识别方法[J]. 重庆理工大学学报(自然科学), 2015, 29(12): 120-126.
Wang Kun, Liu Damao. Intelligent identification for tea state based on deep learning [J]. Journal of Chongqing University of Technology (Natural Science), 2015, 29(12): 120-126.
[11] 吴梅雪, 唐仙, 张富贵, 等. 基于Kmeans聚类法的茶叶嫩芽识别研究[J]. 中国农机化学报, 2015, 36(5): 161-164, 179.
Wu Xuemei, Tang Xian, Zhang Fugui, et al. Tea buds images identification based on lab color model and Kmeans clustering [J]. Journal of Chinese Agricultural Mechanization, 2015, 36(5): 161-164, 179.
[12] 李灿灿, 王宝, 王静, 等. 基于Kmeans聚类的植物叶片图像叶脉提取[J]. 农业工程学报, 2012, 28(17): 157-162.
Li Cancan, Wang Bao, Wang Jing, et al. Extracting vein of leaf image based on Kmeans clustering [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(17): 157-162.
[13] 陈妙婷. 基于计算机视觉的名优茶嫩芽识别与定位[D]. 青岛:青岛科技大学, 2019.
Chen Miaoting. Recognition and location of highquality tea buds based on computer vision [D]. Qingdao: Tsingtao University of Science & Technology, 2019.
[14] 任磊, 赖惠成, 陈钦政, 等. 基于改进分水岭的棉花图像分割方法[J]. 计算机工程与应用, 2012, 48(34): 207-211, 244.
Ren Lei, Lai Huicheng, Chen Qinzheng, et al. Cotton image segmentation method based on improved watershed [J]. Computer Engineering and Applications, 2012, 48(34): 207-211, 244.
[15] 孙肖肖. 基于深度学习的茶叶嫩芽检测和叶部病害图像识别研究[D]. 晋中: 山西农业大学, 2019.
Sun Xiaoxiao. The research of tea buds detection and leaf diseases image recognition based on deep learning [D]. Jinzhong: Shanxi Agricultural University, 2019.
[16] 毛腾跃, 黄印, 文晓国, 等. 基于多特征与多分类器的鲜茶叶分类研究[J]. 中国农机化学报, 2020, 41(12):75-83.
Mao Tengyue, Huang Yin, Wen Xiaoguo, et al. Research on classification of fresh tea leaves based on multiple features and classifiers [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(12): 75-83.
[17] 姜苗苗, 问美倩, 周宇, 等. 基于颜色因子与图像融合的茶叶嫩芽检测方法[J]. 农业装备与车辆工程, 2020, 58(10): 44-47.
|