English

中国农机化学报

中国农机化学报 ›› 2024, Vol. 45 ›› Issue (4): 199-204.DOI: 10.13733/j.jcam.issn.2095-5553.2024.04.029

• 农业智能化研究 • 上一篇    下一篇

基于YOLOv3算法的智能采茶机关键技术研究

马志艳1, 2,李辉1,杨光友1, 2   

  • 出版日期:2024-04-15 发布日期:2024-04-28
  • 基金资助:
    国家重点研发计划基金资助项目(2018YFD0701002—03)

Research on key technologies of intelligent tea picking machine based on YOLOv3 algorithm

Ma Zhiyan1, 2, Li Hui1, Yang Guangyou1, 2   

  • Online:2024-04-15 Published:2024-04-28

摘要: 在复杂背景下精确识别茶叶嫩芽,是实现高端茶叶智能化采摘的关键技术之一。为实现高端茶叶机械化精准采摘,设计一台基于视觉的采茶样机,根据蛛式机械手采摘茶叶的路径规划,将机械手末端的移动坐标问题转换成静平台3个电机转角问题。针对YOLOv3算法进行改进,采用EfficientNet网络替代DarkNet-53网络进行特征提取,并利用目标函数GIOU优化损失函数。试验结果表明:改进的YOLOv3算法在茶叶嫩芽识别方面,其准确率达到86.53%,单张图像平均识别时间为53 ms,相比传统的YOLOv3算法,性能实现明显的提升,可以达到预期目标,满足机器采摘需求。

关键词: 智能采茶, YOLOv3算法, 蛛式机械手, 机器学习, 图像识别

Abstract: Accurate identification of tea shoots in a complex background is one of the key technologies to realize the intelligent picking of highend tea. In order to realize the mechanized and precise picking of highend tea, this paper designs a visualbased tea picking prototype, which converts the moving coordinate problem at the end of the manipulator into the corner problem of three motors of the static platform according to the path planning of the spider manipulator picking tea. The YOLOv3 algorithm is improved, the EfficientNet network is used instead of the DarkNet53 network for feature extraction, and the objective function GIOU is used to optimize the loss function. The experimental results show that the improved YOLOv3 algorithm has an accuracy rate of 86.53% in tea bud recognition, and the average recognition time for a single image is 53 ms. Compared with the traditional YOLOv3 algorithm, the performance has been significantly improved, which can achieve the expected goal and meet the needs of machine picking.

Key words: intelligent tea picking, YOLOv3 algorithm, spider manipulator, machine learning, image recognition

中图分类号: