[1] 郑建乐, 张家祯, 刘微, 等. 土壤有机质含量高光谱定量反演研究[J]. 北方园艺, 2022(16): 83-91.
Zheng Jianle, Zhang Jiazhen, Liu Wei, et al. Study on quantitative inversion of soil organic matter content by hyperspectral [J]. Northern Horticulture, 2022(16): 83-91.
[2] 成永生, 周瑶. 土壤重金属高光谱遥感定量监测研究进展与趋势[J]. 中国有色金属学报, 2021, 31(11): 3450-3467.
Cheng Yongsheng, Zhou Yao. Research progress and trend of quantitative monitoring of hyperspectral remote sensing for heavy metals in soil [J]. The Chinese Journal of Nonferrous Metals. 2021, 31(11): 3450-3467.
[3] 焦彩霞, 郑光辉, 解宪丽, 等. 可见—短近红外成像光谱数据的土壤有机质含量估算[J]. 光谱学与光谱分析, 2020, 40(10): 3277-3281.
Jiao Caixia, Zheng Guanghui, Jie Xianli, et al. Prediction of soil organic matter using visibleshort nearinfrared imaging spectroscopy [J]. Spectroscopy and Spectral Analysis, 2020, 40(10): 3277-3281.
[4] 赵瑞, 崔希民, 刘超. GF-5高光谱遥感影像的土壤有机质含量反演估算研究[J]. 中国环境科学, 2020, 40(8): 3539-3545.
Zhao Rui, Cui Ximin, Liu Chao. Inversion estimation of soil organic matter content based on GF-5 hyperspectral remote sensing image [J]. China Environmental Science, 2020, 40(8): 3539-3545.
[5] 冯泉霖, 李洪涛, 徐夕博, 等. 基于聚类深度网络模型的莱州湾近岸平原表层土壤有机质含量遥感估算[J]. 安全与环境学报, 2022, 22(4): 2248-2258.
Feng Quanlin, Li Hongtao, Xu Xibo, et al. Remote sensed estimation of soil organic matter using clusterbased deep neural network in the nearshore plains of Laizhou Bay, eastern China [J]. Journal of Safety and Environment, 2022, 22(4): 2248-2258.
[6] 叶勤, 姜雪芹, 李西灿, 等. 基于高光谱数据的土壤有机质含量反演模型比较[J]. 农业机械学报, 2017, 48(3): 164-172.
Ye Qin, Jiang Xueqin, Li Xishan, et al. Comparison on inversion model of soil organic matter content based on hyperspectral data [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 164-172.
[7] 〖ZK(〗王延仓, 杨贵军, 朱金山, 等. 基于小波变换与偏最小二乘耦合模型估测北方潮土有机质含量[J]. 光谱学与光谱分析, 2014, 34(7): 1922-1926.Wang Yancang, Ynag Guijun, Zhu Jinshan, et al. Estimation of organic matter content of north Fluvoaquic soil based on the coupling model of wavelet transform and partial least squares [J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1922-1926.〖ZK)〗[7] 于雷, 洪永胜, 耿雷, 等. 基于偏最小二乘回归的土壤有机质含量高光谱估算[J]. 农业工程学报, 2015, 31(14): 103-109.
Yu Lei, Hong Yongsheng, Geng Lei, et al. Hyperspectral estimation of soil organic matter content based on partial least squares regression [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14): 103-109.
[8] Krishnan P, Alexander J D, Butler B J, et al. Reflectance technique for predicting soil organic matter [J]. Soil Science Society of America Journal, 1980, 44(6): 1282-1285.
[9] Hummel J W, Sudduth K A, Hollinger S E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor [J]. Computers and Electronics in Agriculture, 2001, 32(2): 149-165.
[10] Conforti M, Buttafuoco G, Leone A P, et al. Studying the relationship between waterinduced soil erosion and soil organic matter using VisNIR spectroscopy and geomorphological analysis: A case study in southern Italy [J]. Catena, 2013, 110: 44-58.
[11] 尚天浩, 毛鸿欣, 张俊华, 等. 基于PCA敏感波段筛选与SVM建模的银川平原土壤有机质高光谱估算[J]. 生态学杂志, 2021, 40(12): 4128-4136.
Shang Tianhao, Mao Hongxin, Zhang Junhua, et al. Hyperspctral estimation of soil organic matter content in Yinchuan plain, China based on PCA sensitive band screening and SVM modeling [J]. Chinese Journal of Ecology, 2021, 40(12): 4128-4136.
[12] 何少芳, 沈陆明, 谢红霞. 生成式对抗网络的土壤有机质高光谱估测模型[J]. 光谱学与光谱分析, 2021, 41(6): 1905-1911.
He Shaofang, Shen Luming, Xie Hongxia. Hyperspectral estimation model of soil organic matter content using generative adversarial networks [J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1905-1911.
[13] 尼加提·卡斯木, 茹克亚·萨吾提, 师庆东, 等. 基于优化光谱指数的土壤有机质含量估算[J]. 农业机械学报, 2018, 49(11): 155-163.
Nejat Kasim, Rukeya Sawut, Shi Qingdong, et al. Estimation of soil organic matter content based on optimized spectral index [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 155-163.
[14] 栾福明, 张小雷, 熊黑钢, 等. 基于不同模型的土壤有机质含量高光谱反演比较分析[J]. 光谱学与光谱分析, 2013, 33(1): 196-200.
Luan Fuming, Zhang Xiaolei, Xiong Heigang, et al. Comparative analysis of soil organic matter content based on different hyperspectral inversion models [J]. Spectroscopy and Spectral Analysis, 2013, 33(1): 196-200.
[15] 刘磊, 沈润平, 丁国香. 基于高光谱的土壤有机质含量估算研究[J]. 光谱学与光谱分析, 2011, 31(3): 762-766.
Liu Lei, Shen Runping, Ding Guoxiang. Studies on the estimation of soil organic matter content based on hyperspectrum [J]. Spectroscopy and Spectral Analysis, 2011, 31(3): 762-766.
[16] 李晓明, 韩霁昌, 李娟. 典型半干旱区土壤盐分高光谱特征反演[J]. 光谱学与光谱分析, 2014, 34(4): 1081-1084.
Li Xiaoming, Han Jichang, Li Juan. Research on hyperspectral inversion of soil salinity in typical semiarid area [J]. Spectroscopy and Spectral Analysis, 2014, 34(4): 1081-1084.
[17] 胡慧玲, 玉素甫·艾力, 阿布力米提·阿布都卡德尔. 乌鲁木齐市安宁渠区蔬菜中重金属的分布特征研究[J]. 新疆大学学报(自然科学版), 2003, 20(3): 260-263.
Hu Huiling, Yusup Ali, Abdumijit Abdukadir. Study on distribution characterastics of heavy metals in vegetables of Anningqu district in Urumqi [J]. Journal of Xinjiang University (Natural Science Edition), 2003, 20(3): 260-263.
[18] 米热阿地力·库尔班, 买合木提·巴拉提, 斯马伊力江·艾尼瓦尔, 等. 乌鲁木齐市安宁渠蔬菜基地土壤重金属污染现状及潜在生态风险评价[J]. 地球与环境, 2019, 47(4): 485-494.
Miradil Kurban, Maihemut Balati, Simayil Ainiwar, et al. Characteristics and ecological risk assessment of heavy metals in soil of the Anningqu vegetable base in Urumqi [J]. Earth and Environment, 2019, 47(4): 485-494.
[19] 许月英, 李刚, 贾那别克. 乌鲁木齐“市菜篮子”基地土壤环境质量现状调查[J]. 干旱环境监测, 2006(3): 137-141.
Xu Yueying, Li Gang, Jianabieke. Investigation on the soil environmental quality of “Shopping Basket” base in Urumqi [J]. Arid Environmental Monitoring, 2006(3): 137-141.
[20] 杜萍萍, 何丽, 王亚宇. 乌鲁木齐市蔬菜基地土壤有效态镉的空间变异特征[J]. 干旱环境监测, 2011, 25(2): 85-89.
Du Pingping, He Li, Wang Yayu. Spatial variation of soil available Cd in Urumqi vegetable base [J]. Arid Environmental Monitoring, 2011, 25(2): 85-89.
[21] 李孝兰. 用重铬酸钾氧化容量法测定土壤有机质关键技术[J]. 现代农村科技, 2013(23): 36.
[22] 林世敏, 许传炬. 分数阶微分方程的理论和数值方法研究[J]. 计算数学, 2016, 38(1): 1-24.
Li Shimin, Xu Chuanju. Theoretical and numerical investigation of fractional differential equations [J]. Mathematica Numerica Sinica, 2016, 38(1): 1-24.
[23] 徐继刚, 冯新泸, 管亮, 等. 分数阶微分在红外光谱数据预处理中的应用[J]. 化工自动化及仪表, 2012(3): 347-351.
Xu Jigang, Feng Xinlu, Guang Liang, et al. Fractional differential application in reprocessing infrared spectral data [J]. Control and Instruments in Chemical Industry, 2012(3): 347-351.
[24] 高琪, 王玉珍, 冯春晖, 等. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 国土资源遥感, 2022(1): 142-150.
Gao Qi, Wand Yuzhen, Feng Chunhui, et al. Remote sensing inversion of desert soil moisture based on improved spectral indices [J]. Remote Sensing for Natural Resources, 2022(1): 142-150.
[25] 姚付启, 张振华, 杨润亚, 等. 基于红边参数的植被叶绿素含量高光谱估算模型[J]. 农业工程学报, 2009, 25(13): 123-129.
Yao Fuqi, Zhang Zhenhua, Yang Runya, et al. Hyperspectral models for estimating vegetation chlorophyll content based on red edge parameter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(13): 123-129.
[26] 唐海涛, 孟祥添, 苏循新, 等. 基于CARS算法的不同类型土壤有机质高光谱预测[J]. 农业工程学报, 2021, 37(2): 105-113.
Tang Haitao, Meng Xiangtian, Su Xunxin, et al. Hyperspectral prediction on soil organic matter of different types using CARS algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 105-113.
[27] 王喆, 连炎清, 李晓娜, 等. 基于机器学习的浐灞河水质参数遥感反演研究[J]. 人民长江, 2022, 53(9): 13-18.
Wang Zhe, Lian Yanqing, Li Xiaona, et al. Research on remote sensing inversion of water quality parameters in Chanhe River and Bahe River based on machine learning [J]. Yangtze River, 2022, 53(9): 13-18.
[28] 王新颖, 隽志才, 吴庆妍, 等. KNN算法的数据优化策略[J]. 吉林大学学报(信息科学版), 2010, 28(3): 309-313.
Wang Xinying, Jun Zhicai, Wu Qingyan, et al. Data optimization strategy of KNN algorithm [J]. Journal of Jilin University (Information Science Edition), 2010, 28(3): 309-313.
[29] 郑立华, 李民赞, 安晓飞, 等. 基于近红外光谱和支持向量机的土壤参数预测[J]. 农业工程学报, 2010, 26(S2): 81-87.
Zheng Lihua, Li Minzan, An Xiaofei, et al. Forecasting soil parameters based on NIR and SVM [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(S2): 81-87.
[30] 郑淼, 王翔, 李思佳, 等. 黑土区土壤有机质和全氮含量遥感反演研究[J]. 地理科学, 2022, 42(8): 1336-1347.
|