[1] 姜玉英, 刘万才, 黄冲, 等. 2020年全国农作物重大病虫害发生趋势预报[J]. 中国植保导刊, 2020, 40(2): 37-39, 53.
[2] 史雪岩, 李红宝, 王海光, 等. 我国小麦病虫草害防治农药减施增效技术研究进展[J]. 中国农业大学学报, 2022, 27(3): 53-62.
Shi Xueyan, Li Hongbao, Wang Haiguang, et al. Progresses of pesticide reduction techniques in wheat production and the synergistic effects on the prevention and control of wheat pests [J]. Journal of China Agricultural University, 2022, 27(3): 53-62.
[3] 周长建, 宋佳, 向文胜. 基于人工智能的作物病害识别研究进展[J]. 植物保护学报, 2022, 49(1): 316-324.
Zhou Changjian, Song Jia, Xiang Wensheng.Research progresses in artificial intelligence-based crop disease identification [J]. Journal of Plant Protection, 2022, 49(1): 316-324.
[4] 秦丰, 刘东霞, 孙炳达, 等. 基于深度学习和支持向量机的4种苜蓿叶部病害图像识别[J]. 中国农业大学学报, 2017, 22(7): 123-133.
Qin Feng, Liu Dongxia, Sun Bingda, et al. Image recognition of four different alfalfa leaf diseases based on deep learning and support vector machine [J]. Journal of China Agricultural University, 2017, 22(7): 123-133.
[5] Wang J, Jiang H, Chen Q. High-precision recognition of wheat mildew degree based on colorimetric sensor technique combined with multivariate analysis [J]. Microchemical Journal, 2021, 168: 106468.
[6] Feng L, Wu B, Zhu S, et al. Investigation on data fusion of multisource spectral data for rice leaf diseases identification using machine learning methods [J]. Frontiers in Plant Science, 2020, 11: 577063.
[7] 周惠汝, 吴波明. 深度学习在作物病害图像识别方面应用的研究进展[J]. 中国农业科技导报, 2021, 23(5): 61-68.
Zhou Huiru, Wu Boming. Advances in research on deep learning for crop disease image recognition [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 61-68.
[8] Chen H C, Widodo A M, Wisnujati A, et al. AlexNet convolutional neural network for disease detection and classification of tomato leaf [J]. Electronics, 2022, 11(6): 951.
[9] Chen J, Chen J, Zhang D, et al. Using deep transfer learning for image-based plant disease identification [J]. Computers and Electronics in Agriculture, 2020, 173: 105393.
[10] Li Y, Wang H, Dang L M, et al. Crop pest recognition in natural scenes using convolutional neural networks [J]. Computers and Electronics in Agriculture, 2020, 169: 105174.
[11] Rangarajan A K, Purushothaman R, Ramesh A. Tomato crop disease classification using pre-trained deep learning algorithm [J]. Procedia Computer Science, 2018, 133: 1040-1047.
[12] 侯志松, 冀金泉, 李国厚, 等. 集成学习与迁移学习的作物病害图像识别算法[J]. 中国科技论文, 2021, 16(7): 708-714.
Hou Zhisong, Ji Jinquan, Li Guohou, et al. Crop disease image recognition algorithm based on ensemble learning and transfer learning [J]. China Sciencepaper, 2021, 16(7): 708-714.
[13] 周宏威, 沈恒宇, 袁新佩, 等. 基于迁移学习的苹果树叶片病虫害识别方法研究[J]. 中国农机化学报, 2021, 42(11): 151-158.
Zhou Hongwei, Shen Hengyu, Yuan Xinpei, et al. Research on identification method of apple leaf diseases based on transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 151-158.
[14] 张珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021, 26(10): 2305-2325.
Zhang Ke, Feng Xiaohan, Guo Yurong, et al. Overview of deep convolutional neural networks for image classification [J]. Journal of Image and Graphics, 2021, 26(10): 2305-2325.
[15] 刘文婷, 卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用, 2022, 58(6): 1-16.
Liu Wenting, Lu Xinming. Research progress of Transformer based on computer vision [J]. Computer Engineering and Applications, 2022, 58(6): 1-16.
[16] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017, 30.
[17] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [J]. arXiv preprint arXiv: 2010.11929, 2020.
[18] Ma X, Yan M. Design and implementation of craweper based on Scrapy [C]. Journal of Physics: Conference Series. IOP Publishing, 2021, 2033(1): 012204.
[19] 张重生, 陈杰, 纵瑞星, 等. 基于Transformer的低质场景字符检测算法[J]. 北京邮电大学学报, 2022, 45(2): 124-130.
Zhang Chongsheng, Chen Jie, Zong Ruixing, et al. Transformer based scene character detection over low quality images [J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(2): 124-130.
[20] Parmar N, Vaswani A, Uszkoreit J, et al. Image transformer [C]. International Conference on Machine Learning. PMLR, 2018: 4055-4064.
[21] Barani F, Savadi A, Yazdi H S. Convergence behavior of diffusion stochastic gradient descent algorithm [J]. Signal Processing, 2021, 183: 108014.
|