[1] 赵静, 韩甜甜, 张鲜鲜, 等. 应用数码图像技术对梨树叶片营养诊断的初探[J]. 中国农学通报, 2011, 27(13):272-276.
Zhao Jing, Han Tiantian, Zhang Xianxian, et al. Preliminary study of whangkeumbae leaf nutrients status diagnosis by using digital image processing technique [J]. Chinese Agricultural Science Bulletin, 2011, 27(13): 272-276.
[2] 〖ZK(〗王栋. 冀中桃园优质高产的营养诊断技术研究[D]. 保定: 河北农业大学, 2021.Wang Dong. Study on nutrition diagnosis technology for high quality and yield of peach [D]. Baoding: Hebei Agricultural University, 2021.〖ZK)〗[3] 〖ZK(〗魏丽红, 翟秋喜. 猕猴桃缺素症叶片诊断[J]. 北方园艺, 2015(2): 170-174.Wei Lihong, Zhai Qiuxi. Leaf diagnosis for kiwifruit deficiency disease [J]. Northern Horticulture, 2015(2): 170-174.〖ZK)〗[4] 〖ZK(〗李俊豪, 解斌, 李六林. 桃氮素营养及高效利用技术研究进展[J]. 中国果树, 2020(5): 8-12.Li Junhao, Xie Bin, Li Liulin. Research advance in nitrogen nutrition and efficient utilization of peach [J]. China Fruits, 2020(5): 8-12.〖ZK)〗[5] 〖ZK(〗何雪菲, 黄战, 马泽跃, 等. 库尔勒香梨树在不同生育期的氮肥利用率[J]. 经济林研究, 2020, 38(4): 134-142.He Xuefei, Huang Zhan, Ma Zeyue, et al. Nitrogen utilization rate of Korla fragrant pear trees in different growth periods [J]. Non-wood Forest Research, 2020, 38(4): 134-142.〖ZK)〗[2] 李佳佳, 杨再强. 高温胁迫下番茄临界氮模型的建立及氮素营养诊断[J]. 中国农业气象, 2021, 42(1): 44-55.
Li Jiajia, Yang Zaiqiang. Establishment of critical nitrogen model and nitrogen nutrition diagnosis of tomato under high temperature stress [J]. Chinese Journal of Agrometeorology, 2021, 42(1): 44-55.
[3] 郭静霞, 张明旭, 王聪聪, 等. 遥感技术在药用植物资源中的应用研究[J]. 中国中药杂志, 2021, 46(18): 4689-4696.
Guo Jingxia, Zhang Mingxu, Wang Congcong, et al. Application of remote sensing technology in medicinal plant resources [J]. China Journal of Chinese Materia Medica, 2021, 46(18): 4689-4696.
[4] 孙中宇, 陈燕乔, 杨龙, 等. 轻小型无人机低空遥感及其在生态学中的应用进展[J]. 应用生态学报, 2017, 28(2): 528-536.
Sun Zhongyu, Chen Yanqiao, Yang Long, et al. Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology [J]. Chinese Journal of Applied Ecology, 2017, 28(2): 528-536.
[5] Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications: A meta-review [J]. Remote Sensing of Environment, 2020, 236: 111402.
[6] Osco L P, Marcato J, Ramos A P M, et al. A review on deep learning in UAV remote sensing [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102456.
[11] 〖ZK(〗金伟, 葛宏立, 杜华强, 等. 无人机遥感发展与应用概况[J]. 遥感信息, 2009(1): 88-92.Jing Wei, Ge Jinli, Du Huaqiang, et al. A review on unmanned aerial vehicle remote sensing and Its application [J]. Remote Sensing Information, 2009(1): 88-92.〖ZK)〗[7] 尹欣繁, 车兵辉, 章贵川, 等. 小型旋翼无人机建模及航线控制研究[J]. 火力与指挥控制, 2022, 47(2): 140-145.
Yin Xinfan, Che Binghui, Zhang Guichuan, et al. Research on modeling and route control of small-scale rotor UAV [J]. Fire Control & Command Control, 2022, 47(2): 140-145.
[13] 〖ZK(〗何勇, 张艳超. 农用无人机现状与发展趋势[J]. 现代农机, 2014(1): 1-5.〖ZK)〗[8] 马梁, 苟于涛, 雷涛, 等. 基于多尺度特征融合的遥感图像小目标检测[J]. 光电工程, 2022, 49(4): 49-65.
Ma Liang, Gou Yutao, Lei Tao, et al. Small object detection based on multi-scale feature fusion using remote sensing images [J]. Opto-Electronic Engineering, 2022, 49(4): 49-65.
[15] 〖ZK(〗刘光辉. 低空无人机探测技术的发展前景与趋势[J]. 现代雷达, 2022, 44(4): 99-100.〖ZK)〗[9] 雷剑. 轻小型无人机遥感在精准农业中的应用研究[J]. 农业与技术, 2022, 42(3): 41-43.
[10] 刘琳, 郑兴明, 姜涛, 等. 无人机遥感植被覆盖度提取方法研究综述[J]. 东北师大学报(自然科学版), 2021, 53(4): 151-160.
Liu Lin, Zheng Xingming, Jiang Tao, et al. Extraction method of fractional vegetation cover from unmanned aerial vehicle remote sensing: A review [J]. Journal of Northeast Normal University(Natural Science Edition), 2021, 53(4): 151-160.
[11] 王娟, 陈永富, 陈巧, 等. 基于无人机遥感的森林参数信息提取研究进展[J]. 林业资源管理, 2020(5): 144-151.
Wang Juan, Chen Yongfu, Chen Qiao, et al. Research on forest parameter information extraction progress driven by UAV remote sensing technology [J]. Forest Resources Management, 2020(5): 144-151.
[12] 王彦宇. 基于固定翼无人机的水稻长势无损监测研究[D]. 南京: 南京农业大学, 2019.
Wang Yanyu. Rice growth monitoring based on a fixed-wing unmanned aerial vehicle platform [D]. Nanjing: Nanjing Agricultural University, 2019.
[13] Sugiura R, Noguchi N, Ishii K. Remote-sensing technology for vegetation monitoring using an unmanned helicopter [J]. Biosystems Engineering, 2005, 90(4): 369-379.
[14] 赵静, 龙腾, 兰玉彬, 等. 多旋翼无人机近地遥感光谱成像装置研制[J]. 农业工程学报, 2020, 36(3): 78-85.
Zhao Jing, Long Teng, Lan Yubin, et al. Development of near-earth remote sensing spectral imaging device based on multi-rotor UAV [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 78-85.
[15] Corcoles J I, Ortega J F, Hernandez D, et al. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle [J]. Biosystems Engineering, 2013, 115(1): 31-42.
[16] Xie C Q, Yang C. A review on plant high-throughput phenotyping traits using UAV-based sensors [J]. Computers and Electronics in Agriculture, 2020, 178: 105731.
[17] 许童羽, 郭忠辉, 于丰华, 等. 采用GA-ELM的寒地水稻缺氮量诊断方法[J]. 农业工程学报, 2020, 36(2): 209-218.
Xu Tongyu, Guo Zhonghui, Yu Fenghua, et al. Genetic algorithm combined with extreme learning machine to diagnose nitrogen deficiency in rice in cold region [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 209-218.
[18] 周慧, 苏有勇, 王重洋, 等. 利用无人机的多光谱参数预测荔枝叶片养分质量分数[J]. 热带地理, 2019, 39(4): 562-570.
Zhou Hui, Su Youyong, Wang Chongyang, et al. Prediction of nutrient content in litchi leaves by UAV multispectral parameters [J]. Tropical Geography, 2019, 39(4): 562-570.
[19] 束美艳, 李世林, 魏家玺, 等. 基于无人机平台的柑橘树冠信息提取[J]. 农业工程学报, 2021, 37(1): 68-76.
Shu Meiyan, Li Shilin, Wei Jiaxi, et al. Extraction of citrus crown parameters using UAV platform [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 68-76.
[20] Perry E M, Goodwin I, Cornwall D. Remote sensing using canopy and leaf reflectance for estimating nitrogen status in red-blush pears [J]. Hortscience, 2018, 53(1): 78-83.
[21] Prado Osco L, Marques Ramos A P, Roberto Pereira D, et al. Predicting canopy nitrogen content in citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-imagery [J]. Remote Sensing, 2019, 11(24): 2925.
[22] Moghimi A, Pourreza A, Zuniga-Ramirez G, et al. A novel machine learning approach to estimate grapevine leaf nitrogen concentration using aerial multispectral imagery [J]. Remote Sensing, 2020, 12(21): 3515.
[23] Noguera M, Aquino A, Ponce J M, et al. Nutritional status assessment of olive crops by means of the analysis and modelling of multispectral images taken with UAVs [J]. Biosystems Engineering, 2021, 211: 1-18.
[24] 房贤一. 不同物候期的苹果树冠层氮素含量高光谱估测研究[D]. 泰安: 山东农业大学, 2015.
Fang Xianyi. Hyperspectral estimation of apple tree canopy nitrogen contents at different phenological phases [D]. Taian: Shandong Agricultural University, 2015.
[25] 陈澜. 基于高光谱遥感的苹果生化参数估算模型研究[D]. 杨凌: 西北农林科技大学, 2020.
Chen Lan. Study on the estimation model of Apple biochemical parameters based on hyperspectral remote sensing [D]. Yangling: Northwest A & F University, 2020.
[26] 杨福芹, 冯海宽, 李振海, 等. 苹果叶片氮含量高光谱反演方法对比[J]. 遥感技术与应用, 2021, 36(2): 353-361.
Yang Fuqin, Feng Haikuan, Li Zhenhai, et al. Comparison of hyperspectral remote sensing inversion methods for apple leaf nitrogen content [J]. Remote Sensing Technology and Application, 2021, 36(2): 353-361.
[27] 王鑫梅, 张劲松, 孟平, 等. 基于无人机遥感影像的核桃冠层氮素含量估算[J]. 农业机械学报, 2021, 52(2): 178-187.
Wang Xinmei, Zhang Jinsong, Meng Ping, et al. Estimation of nitrogen content in walnut canopy based on UAV remote sensing image [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 178-187.
[28] 田中宇. 苹果树冠层氮素含量遥感诊断与施肥模型研究[D]. 泰安: 山东农业大学, 2021.
Tian Zhongyu. Remote sensing diagnosis of nitrogen content in apple canopies and fertilization model of apple trees [D]. Taian: Shandong Agricultural University, 2021.
[29] 权泽堃, 王金星, 刘双喜, 等. 基于图像处理的苹果树叶片氮含量检测[J]. 现代农业装备, 2021, 42(3): 40-48.
Quan Zekun, Wang Jinxing, Liu Shuangxi, et al. Detection of nitrogen content in apple tree leaves based on image processing [J]. Modern Agricultural Equipment, 2021, 42(3): 40-48.
[30] 冯璐, 邢芳芳, 杨北方, 等. 基于红外热成像的棉花叶片温度分布量化方法研究[J]. 棉花学报, 2020, 32(6): 569-576.
Feng Lu, Xing Fangfang, Yang Beifang, et al. The quantitative method for temperature distribution of cotton leaves based on infrared thermal images [J]. Cotton Science, 2020, 32(6): 569-576.
[31] 苗艳龙, 彭程, 高阳, 等. 基于地基激光雷达的玉米株高与茎粗自动测量研究[J]. 农业机械学报, 2021, 52(S1): 43-50.
Miao Yanlong, Peng Cheng, Gao Yang, et al. Automatic measurement of plant height and stem thickness of maize based on terrestrial laser scanning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 43-50.
[32] 甘平, 董燕生, 孙林, 等. 基于无人机载LiDAR数据的玉米涝灾灾情评估[J]. 中国农业科学, 2017, 50(15): 2983-2992.
Gan Ping, Dong Yansheng, Sun Li, et al. Evaluation of maize waterlogging disaster using UAV LiDAR data [J]. Scientia Agricultura Sinica, 2017, 50(15): 2983-2992.
[33] Shendryk Y, Sofonia J, Garrard R, et al. Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging [J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92: 14.
[34] 井宇航, 郭燕, 张会芳, 等. 无人机飞行高度对冬小麦植株氮积累量预测模型的影响[J]. 河南农业科学, 2022, 51(2): 147-158.
Jing Yuhang, Guo Yan, Zhang Huifang, et al. Effects of UAV flight height on prediction model of plant nitrogen accumulation in winter wheat [J]. Journal of Henan Agricultural Sciences, 2022, 51(2): 147-158.
|