[1] 郑玉龙, 赵明. 基于深度学习的自然环境下花朵识别[J]. 计算技术与自动化, 2019, 38(2): 114-118.
Zhang Yulong, Zhao Ming. Deep learning for flower identification in natural environment [J]. Computing Technology and Automation, 2019, 38(2): 114-118.
[2] 张星, 高巧明, 潘栋, 等. 基于改进YOLOv3的田间复杂环境下菠萝拾捡识别研究[J]. 中国农机化学报, 2021, 42(1): 201-206.
Zhang Xing, Gao Qiaoming, Pan Dong, et al. Picking recognition research of pineapple in complex field environment based on improved YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(1): 201-206.
[3] 马志艳, 朱熠, 张徐康, 等. 基于视觉的玉米苗期作物识别与定位方法研究[J]. 中国农机化学报, 2020, 41(9): 131-137.
Ma Zhiyan, Zhu Yi, Zhang Xukang, et al. Research on the method of crop recognition and location in maize seedling stage based on vision [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(9): 131-137.
[4] 陈国防, 陈兆英, 王玉亮, 等. 基于数据增强深度学习的苹果花检测方法研究[J]. 中国农机化学报, 2022, 43(5): 148-155.
Chen Guofang, Chen Zhaoying, Wang Yuliang, et al. Research on detection method of apple flower based on dataenhanced deep learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 148-155.
[5] Dias P A, Tabb A, Medeiros H. Multispecies fruit flower detection using a refined semantic segmentation network [J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3003-3010.
[6] Dias P A, Tabb A, Medeiros H. Apple flower detection using deep convolutional networks [J]. Computers in Industry, 2018, 99: 17-28.
[7] Farjon G, Krikeb O, Hillel A B, et al. Detection and counting of flowers on apple trees for better chemical thinning decisions [J]. Precision Agriculture, 2020, 21: 503-521.
[8] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[9] 潘惠苹, 王敏琴, 张福泉, 等. 基于优化YOLO-V4的交通标志检测识别方法[J]. 计算机科学, 2022, 49(11): 179-184.
Pan, Huiping, Wang, Minqin, Zhang Fuquan, et al. Traffic sign detection and recognition method based on optimized YOLO-V4 [J]. Computer Science, 2022, 49(11): 179-184.
[10] 邢姗姗, 赵文龙. 基于YOLO系列算法的复杂场景下无人机目标检测研究综述[J]. 计算机应用研究, 2020, 37(S2): 28-30.
Xing Shanshan, Zhao Wenlong, et al. Review of UAV target detection in complex scenarios based on YOLO series algorithms [J]. Application Research of Computers, 2020, 37(S2): 28-30.
[11] 张上, 王恒涛, 冉秀康, 等. 基于YOLOv5的轻量化交通标志检测方法[J]. 电子测量技术, 2024(2): 49-55.
Zhang Shang, Wang Hengtao, Ran Xiukang, et al. Lightweight traffic sign detection algorithm based on YOLOv5 [J]. Electronic Measurement Technology, 2024(2): 49-55.
[12] 刘丽娟, 窦佩佩, 王慧, 等. 自然环境下重叠与遮挡苹果图像识别方法研究[J]. 中国农机化学报, 2021, 42(6): 174-181.
Liu Lijuan, Dou Peipei, Wang Hui, et al. Image recognition algorithm research of overlapped apple fruits in the natural environment [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 174-181.
[13] 王林柏, 张博, 姚竟发, 等. 基于卷积神经网络马铃薯叶片病害识别和病斑检测[J]. 中国农机化学报, 2021, 42(11): 122-129.
Wang Linbai, Zhang Bo, Yao Jingfa, et al. Potato leaf disease recognition and potato leaf disease spot detection based on Convolutional Neural Network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 122-129.
[14] 董丽君, 曾志高, 易胜秋, 等. 基于YOLOv5的遥感图像目标检测[J]. 湖南工业大学学报, 2022, 36(3): 44-50.
Dong Lijun, Zeng Zhigao, Yi Shengqiu, et al. Research on a YOLOv5: Based remote sensing image target detection [J]. Journal of Hunan University of Technology, 2022, 36(3): 44-50.
|