[1] R Shamshiri R, Weltzien C, Hameed I A, et al. Research and development in agricultural robotics: A perspective of digital farming [J]. International Journal of Agricultural and Biological Engineering, 2018, 11(4): 1-14.
[2] Zheng X, Lei Q, Yao R, et al. Image segmentation based on adaptive K-means algorithm [J]. EURASIP Journal on Image and Video Processing, 2018, 2018(1): 1-10.
[3] Qi C, Gao J, Pearson S, et al. Tea chrysanthemum detection under unstructured environments using the TC-YOLO model [J]. Expert Systems with Applications, 2022, 193: 116473.
[4] GenéMola J, Gregorio E, Guevara J, et al. Fruit detection in an apple orchard using a mobile terrestrial laser scanner [J]. Biosystems Engineering, 2019, 187: 171-184.
[5] Mao S, Li Y, Ma Y, et al. Automatic cucumber recognition algorithm for harvesting robots in the natural environment using deep learning and multifeature fusion [J]. Computers and Electronics in Agriculture, 2020, 170: 105254.
[6] Birrell S, Hughes J, Cai J Y, et al. A fieldtested robotic harvesting system for iceberg lettuce [J]. Journal of Field Robotics, 2020, 37(2): 225-245.
[7] Luo L, Tang Y, Lu Q, et al. A vision methodology for harvesting robot to detect cutting points on peduncles of double overlapping grape clusters in a vineyard [J]. Computers in Industry, 2018, 99: 130-139.
[8] 刘伟, 张群, 李志坚, 等. 不同品种黄花菜游离氨基酸组成的主成分分析及聚类分析[J]. 食品科学, 2019, 40(10): 243-250.
Liu Wei, Zhang Qun, Li Zhijian, et al. Principal component analysis and cluster analysis for evaluating free amino acids of different cultivars of daylily buds [J]. Food Science, 2019, 40(10): 243-250.
[9] 余蕾. 大同黄花农产品区域公用品牌传播策划案[D]. 杭州: 浙江大学, 2019.Yu Lei. Branding communication plan of Datong Day Lily regional public brand [D]. Hangzhou: Zhejiang University, 2019.
[10] 李可昕, 张超凡, 刘佩冶, 等. 鲜黄花菜衰老机制与采后贮藏保鲜技术研究进展[J]. 食品科学, 2022(17): 398-404.
Li Kexin, Zhang Chaofan, Liu Peizhi, et al. Fresh daylily: Progress in research on its senescence mechanism and review of technologies for its postharvest preservation [J]. Food Science, 2022(17): 398-404.
[11] Fu L, Tola E, AlMallahi A, et al. A novel image processing algorithm to separate linearly clustered kiwifruits [J]. Biosystems Engineering, 2019, 183: 184-195.
[12] Sa I, Ge Z, Dayoub F, et al. DeepFruits: A fruit detection system using deep neural networks [J]. Sensors, 2016, 16(8): 1222.
[13] 谢忠红. 采摘机器人图像处理系统中的关键算法研究[D]. 南京: 南京农业大学, 2013.Xie Zhonghong. Research on key algorithm of image processing system of fruit picking robot [D]. Nanjing: Nanjing Agricultural University, 2013.
[14] Amatya S, Karkee M. Integration of visible branch sections and cherry clusters for detecting cherry tree branches in dense foliage canopies [J]. Biosystems Engineering, 2016, 149: 72-81.
[15] Zhu X, Lü S, Wang X, et al. TPHYOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on dronecaptured scenarios [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[16] Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLOV3 model [J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
[17] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28: 91-99.
[18] Jiang H, LearnedMiller E. Face detection with the faster R-CNN [C]. 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE, 2017: 650-657.
[19] 张文超. 基于图神经网络的人体姿态识别关键技术研究[D]. 四川: 电子科技大学, 2022.
Zhang Wenchao. Research on key technologies of human posture recognition based on graph neural network [D]. Sichuan: University of Electronic Science and Technology of China, 2022.
[20] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. ArXiv Preprint ArXiv: 1804.02767, 2018.
[21] Papandreou G, Zhu T, Chen L C, et al. PersonLab: Person pose estimation and instance segmentation with a bottomup, partbased, geometric embedding model [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 269-286.
[22] Zhu C, He Y, Savvides M. Feature selective anchorfree module for singleshot object detection [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 840-849.
[23] Zhou X, Wang D, Krhenbühl P. Objects as points [EB/OL].
https://arxiv.org/pdf/1904.07850.pdf, 2019.
|