[ 1]王方 .新疆核桃油精深加工关键技术重大专项启动[ N].中国科学报, 2023-01-19(003).
[ 2]胡东宇,高健,黄力平,等 .南疆四地州核桃产业现状与发展思路[ J].北方园艺, 2021(13):148-154.
Hu Dongyu, Gao Jian, Huang Liping, et al. Current situation and development ideas of walnut industry in four prefectures of Southern Xinjiang[J]. Northern Horticulture,2021(13):148-154.
[ 3]Dian R,Li J X,Yi B Y. Computer vision detection of foreign objects in walnuts using deep learning[J]. Computers and Electronics in Agriculture, 2019, 162: 1001-1010.
[ 4]许骞,蔡健荣,杜灿,等.基于软 X射线成像技术的柑橘内部浮皮和枯水检测[J].智慧农业(中英文),2021,3(4):53-65.
Xu Qian,Cai Jianrong,Du Can,et al. Detection of peel puffing and granulation in citrus based on Soft X.ray imaging technology[J]. Smart Agriculture,2021,3(4): 53-65.
[ 5]Van De Looverbosch T,Bhuiyan M H R,Verboven P,et al. Nondestructive internal quality inspection of pear fruit by X.ray CT using machine learning[J]. Food Control, 2020,113:107170.
[ 6]王灵敏,蒋瑜 .基于深度学习的香蕉成熟度自动分级[ J].食品与机械, 2022,38(11):149-154.
Wang Lingmin, Jiang Yu. Automatic classification of banana ripeness base on deep learning[J]. Food & Machinery,2022,38(11):149-154.
[ 7]李文宝,曹成茂,张金炎,等 .基于深度学习的山核桃破壳物料分类识别[J].食品与机械, 2021,37(9):133-138.
[ 8]闫龙泉,骆沛然,史伟,等 .基于 ResNet的唐卡检索[ J].宁夏大学学报(自然科学版),2021,42(3):257-262,269.
Yan Longquan, Luo Peiran, Shi Wei, et al. Thangka retrieval based on ResNet[J]. Journal of Ningxia University(Natural Science Edition),2021,42(3): 257-262,269.
[ 9]秦嘉奇 .基于 Mobilenet的农作物叶片病害识别方法[ J].信息与电脑(理论版),2021,33(18):181-184.
[10]黄星奕,张庆磊,吕强 .软 X射线技术对核桃内部品质的无损检测研究[ J].食品工业科技, 2011,32(2):344-346.
[11]Zhao K,Zha Z,Li H,et al. Early detection of moldy apple core based on time.frequency images of vibro.acoustic signals[J]. Postharvest Biology and Technology,2021, 179:111589.
[12]GB/T 20398—2006,核桃坚果质量等级[ S].
[13]Alex K,Ilya S,Geoffrey H. ImageNet classification with deep convolutional neural networks[J]. Communications
of the ACM,2017,60(6):84-90.
[14]Karen S. Very deep convolutional networks for large.scale image recognition[J]. arxiv preprint arxiv:1409. 1556, 2014.
[15]He K,Zhang X,Ren S,et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
[16]Howard A G,Zhu M,Chen B,et al. Mobilenets:Efficient convolutional neural networks for mobile vision applications[J]. arxiv preprint arxiv:1704. 04861,2017.
[17]张淑娟,高庭耀,任锐,等 .基于 X射线成像与卷积神经网络的核桃内部品质检测[ J].农业机械学报, 2022,53(1):383-388.
Zhang Shujuan,Gao Tingyao,Ren Rui,et al. Detection of walnut internal quality based on X.ray imaging technology and convolution neural network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):383-388.
[18]Kausar A, Sharif M, Park J, et al. Pure-CNN: A framework for fruit images classification[C]. 2018 International Conference on Computational Science and Computational Intelligence(CSCI). IEEE,2018:404-408.
[19]Qin X,Wang X,Li R,et al. Fruit image classification based on Mobilenetv2 with transfer learning technique[C]. Proceedings of the 3rd International Conference on Computer Science and Application Engineering,2019:1-7.
|