[1] 森姚. 开阳枇杷: 铜铃之中有黄金[J]. 消费指南, 2015(9): 26-27.
[2] Zhao Yiying, Zhang Chu, Zhu Susu, et al. Shape induced reflectance correction for non-destructive determination and visualization of soluble solids content in winter jujubes using hyperspectral imaging in two different spectral ranges [J]. Postharvest Biology and Technology, 2020, 161: 111080.
[3] 刘燕德, 周延睿. 便携式近红外水果内部品质检测仪原理及应用进展[J]. 中国农机化学报, 2013, 34(4): 204-209.
Liu Yande, Zhou Yanrui. Principle and application of nondestructive evaluation for fruit internal quality using portable near-infrared spectrometry [J]. Journal of Chinese Agricultural Mechanization, 2013, 34(4): 204-209.
[4] Magwaza L S, Opara U L, Nieuwoudt H, et al. NIR spectroscopy applications for internal and external quality analysis of citrus fruit: A review [J]. Food and Bioprocess Technology, 2012, 5(2): 425-444.
[5] 张伏, 张朝臣, 陈自均, 等. 光谱检测技术在种子质量检测中的应用[J]. 中国农机化学报, 2021, 42(2): 109-114.
Zhang Fu, Zhang Chaochen, Chen Zijun, et al. Application of spectral testing technology in seed quality testing [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 109-114.
[6] 刘燕德, 姜小刚, 周衍华, 等. 基于高光谱成像技术对脐橙叶片的叶绿素、水分和氮素定量分析[J]. 中国农机化学报, 2016, 37(3): 218-224.
Liu Yande, Jiang Xiaogang, Zhou Yanhua, et al. Quantitative analysis of chlorophyll, water and nitrogen for navel orange leaf based on hyper-spectral imaging technology [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(3): 218-224.
[7] 马本学, 肖文东, 祁想想, 等. 基于漫反射高光谱成像技术的哈密瓜糖度无损检测研究[J]. 光谱学与光谱分析, 2012, 32(11): 3093-3097.
Ma Benxue, Xiao Wendong, Qi Xiangxiang, et al. Nondestructive measurement of sugar content of Hami melon based on diffuse reflectance hyperspectral imaging technique [J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 3093-3097.
[8] 连雅茹. 基于高光谱成像技术的番茄内部品质检测研究[D]. 杨凌: 西北农林科技大学, 2020.
Lian Yaru. Detecting tomato internal quality based on hyperspectral imaging technology [D]. Yangling: Northwest A & F University, 2020.
[9] Zhang Dongyan, Xu Yunfei, Huang Wenqian, et al. Nondestructive measurement of soluble solids content in apple using near infrared hyperspectra imaging coupled with wavelength selection algorithm [J]. Infrared Physics & Technology, 2019, 98: 297-304.
[10] 许丽佳, 陈铭, 王玉超, 等. 高光谱成像的猕猴桃糖度无损检测方法[J]. 光谱学与光谱分析, 2021, 41(7): 2188-2195.
Xu Lijia, Chen Ming, Wang Yuchao, et al. Study on non-destructive detection method of kiwifruit sugar content based on hyperspectral imaging technology [J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2188-2195.
[11] Zhang Hailiang, Zhan Baishao, Pan Fan, et al. Determination of soluble solids content in oranges using visible and near infrared full transmittance hyperspectral imaging with comparative analysis of models [J]. Postharvest Biology and Technology, 2020, 163: 111148.
[12] Gao Sheng, Xu Jianhua. Hyperspectral image information fusion-based detection of soluble solids content in red globe grapes [J]. Computers and Electronics in Agriculture, 2022, 196: 106822.
[13] 霍迎秋, 张晨, 李宇豪, 等. 高光谱图像结合机器学习方法无损检测猕猴桃[J]. 中国农机化学报, 2019, 40(4): 71-77.
Huo Yingqiu, Zhang Chen, Li Yuhao, et al. Nondestructive detection for kiwifruit based on the hyperspectral technology and machine learning [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 71-77.
[14] 尚静, 黄人帅, 张艳, 等. 高光谱成像结合模式识别无损检测猕猴桃成熟度[J]. 中国农机化学报, 2022, 43(8): 90-95.
Shang Jing, Huang Renshuai, Zhang Yan, et al. Nondestructive detection for maturity of kiwifruit based on hyperspectral imaging and pattern recognition [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 90-95.
[15] 董朋欣, 董安国, 李楚婷, 等. 基于全卷积网络和自编码的高光谱图像分类[J]. 计算机工程与应用, 2022, 58(5): 256-263.
Dong Pengxin, Dong Anguo, Li Chuting, et al. Hyperspectral image classification based on fully convolutional network and auto-encoder [J]. Computer Engineering and Applications, 2022, 58(5): 256-263.
[16] 周扬, 戴曙光, 吕进, 等. 光谱预处理对近红外光谱快速检测黄酒酒精度的影响[J]. 光电工程, 2011, 38(4): 54-58.
Zhou Yang, Dai Shuguang, Lü Jin, et al. Effect of spectral pretreatment on near infrared spectroscopy for rapid detection of wine alcohol [J]. Opto-Electronic Engineering, 2011, 38(4): 54-58.
[17] Sun Jun, Zhou Xin, Hu Yongguang, et al. Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging [J]. Computers and Electronics in Agriculture, 2019, 160: 153-159.
[18] 王晓明, 章海亮, 罗微, 等. 近红外光谱检测梨果硬度研究[J]. 中国农机化学报, 2015, 36(6): 120-123, 142.
Wang Xiaoming, Zhang Hailiang, Luo Wei, et al. Study on pear firmness detection by using near infrared reflectance spectroscopy based on CARS [J]. Journal of Chinese Agricultural Mechanization, 2015, 36(6): 120-123, 142.
[19] 蒋柏春, 李德仑, 韦克苏, 等. 基于高光谱的烤烟叶绿素含量估算模型研究[J]. 中国农机化学报, 2022, 43(3): 104-110.
Jiang Baichun, Li Delun, Wei Kesu, et al. Estimation model of chlorophyll content of flue-cured tobacco based on hyperspectral [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 104-110.
[20] 高文强, 肖志云. 基于Atrous-CDAE-1DCNN的紫丁香高光谱数据的叶绿素含量反演[J]. 中国农机化学报, 2022, 43(7): 158-166.
Gao Wenqiang, Xiao Zhiyun. Inversion of chlorophyll content of lilac hyperspectral data based on Atrous-CDAE-1DCNN [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 158-166.
[21] Jie Dengfei, Xie Lijuan, Fu Xiaping, et al. Variable selection for partial least squares analysis of soluble solids content in watermelon using near-infrared diffuse transmission technique [J]. Journal of Food Engineering, 2013, 118(4): 387-392.
[22] Wang Bin, He Junlin, Zhang Shujuan, et al. Nondestructive prediction and visualization of total flavonoids content in Cerasus Humilis fruit during storage periods based on hyperspectral imaging technique [J]. Journal of Food Process Engineering, 2021, 44(10): e13807.
[23] 邵园园, 王永贤, 玄冠涛, 等. 基于高光谱成像的肥城桃品质可视化分析与成熟度检测[J]. 农业机械学报, 2020, 51(8): 344-350.
Shao Yuanyuan, Wang Yongxian, Xuan Guantao, et al. Visual detection of SSC and firmness and maturity prediction for Feicheng peach by using hyperspectral imaging [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 344-350.
|