中国农机化学报 ›› 2024, Vol. 45 ›› Issue (8): 170-179.DOI: 10.13733/j.jcam.issn.2095‑5553.2024.08.025
张倩1,王明1,于峰1,陶震宇1,张辉1,李刚2
出版日期:
2024-08-15
发布日期:
2024-07-26
基金资助:
Zhang Qian1, Wang Ming1, Yu Feng1, Tao Zhenyu1, Zhang Hui1, Li Gang2
Online:
2024-08-15
Published:
2024-07-26
摘要: 基于机器视觉的作物精准分类识别是农业自动化、智能化作业的前提。在作物图像分类识别任务中,卷积神经网络(CNN)是当前应用最广泛的算法之一。作物表型特征及生长环境的复杂性,决定作物图像获取平台的多样性。通过分析2020—2022年国内外基于CNN的作物分类识别研究,图像获取平台可划分为通用平台和自建平台两大类:通用平台硬件产品成熟、部署方便,但要做好设备选型和环境搭建;自建平台分为固定式和移动式,能高效获取试验数据,但硬件集成较为复杂。详细对比分析各类平台的优缺点及适用范围。作物图像获取平台的未来趋势包括:高通量、高效率、自动化的通用图像获取装置,集成多种传感器的多模态数据采集与融合应用,自带运算处理的智能摄像头等,更精细化的图像获取平台将有效支撑作物表型的深入研究。
中图分类号:
张倩, 王明, 于峰, 陶震宇, 张辉, 李刚. 基于CNN的作物分类识别图像获取平台研究进展[J]. 中国农机化学报, 2024, 45(8): 170-179.
v. Research progress of image acquisition platform for crop classification and recognition based on CNN [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 170-179.
[ 1 ] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of IEEE, 1998, 86(11): 2278-2324. [ 2 ] Kubera E, Kubik Komar A, Piotrowska Weryszko K, et al. Deep learning methods for improving pollen monitoring [J]. SENSORS, 2021, 21(10), 3526. [ 3 ] Sabanci K, Aslan M F, Ropelewska E, et al. A convolutional neural network‑based comparative study for pepper seed classification: Analysis of selected deep features with support vector machine [J]. Journal of Food Process Engineering, 2022, 45(6), 13955. [ 4 ] 孟志超, 贺磊盈, 杜小强, 等. 基于Enhanced VGG16的油茶品种分类[J]. 农业工程学报, 2022, 38(10): 176-181. Meng Zhichao, He Leiying, Du Xiaoqiang, et al. Classification of camellia oleifera based on enhanced VGG16 network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10): 176-181. [ 5 ] 宋怀波, 王亚男, 王云飞, 等. 基于YOLOv5s的自然场景油茶果识别方法[J]. 农业机械学报, 2022, 53(7): 234-242. Song Huaibo, Wang Ya nan, Wang Yunfei, et al. Camellia oleifera fruit dectection in natural scene based on YOLOv5s [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 234-242. [ 6 ] 尚钰莹, 张倩如, 宋怀波. 基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用[J]. 农业工程学报, 2022, 38(9): 222-229. Shang Yuying, Zhang Qianru, Song Huaibo. Application of deep learning based on YOLOv5s to apple flower detection in natural scenes [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 222-229. [ 7 ] Selvam L, Kavitha P. Classification of ladies finger plant leaf using deep learning [J]. Journal of Ambient Intelligence and Humanized Computing, 2020. [ 8 ] Zhou Zhongxian, Song Zhenzhen, Fu Longsheng, et al. Real‑time kiwifruit detection in orchard using deep learning on Android (TM) smartphones for yield estimation [J]. Computers and Electronics in Agriculture, 2020,179: 105856. [ 9 ] Fu Longsheng, Feng Yali, Wu Jingzhu, et al. Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model [J]. Precision Agriculture, 2021, 22(3): 754-776. [10] Lu Wei, Du Rongting, Niu Pengshuai, et al. Soybean yield preharvest prediction based on bean pods and leaves image recognition using deep learning neural network combined with GRNN[J]. Frontiers in Plant Science, 2022, 12: 791256. [11] Seo D, Cho B H, Kim K C. Development of monitoring robot system for tomato fruits in hydroponic greenhouses [J]. Agronomy‑basel, 2021, 11(11): 2211. [12] Taner A, Oztekin Y B, Duran H. Performance analysis of deep learning CNN models for variety classification in hazelnut [J]. Sustainability, 2021, 13(12): 6527. [13] Chen Jiqing, Wang Zhikui, Wu Jiahua, et al. An improved Yolov3 based on dual path network for cherry tomatoes detection [J]. Journal of Food Process Engineering, 2021, 44(10): 13803. [14] Liu Yixue, Su Jinya, Shen Lei, et al. Development of a mobile application for identification of grapevine cultivars via deep learning [J]. International Journal of Agricultural and Biological Engineering, 2021, 14(5): 172-179. [15] Shi Xiao, Chai Xiujuan, Yang Chenxue, et al. Vision‑based apple quality grading with multi‑view spatial network [J]. Computers and Electronics in Agriculture, 2022, 195: 106793. [16] Nasiri A, Taheri‑Garavand A, Fanourakis D, et al. Automated grapevine cultivar identification via leaf imaging and deep convolutional neural networks[J]. A Proof‑of‑Concept Study Employing Primary Iranian Varieties. Plants‑Basel, 2021, 10(8): 162. [17] Han Jingye, Shi Liangsheng, Yang Qi, et al. Real‑time detection of rice phenology through convolutional neural network using handheld camera images [J]. Precision Agriculture, 2021, 22(1): 154-178. [18] Wei Pengliang, Jiang Ting, Peng Huaiyue, et al. Coffee flower identification using binarization algorithm based on convolutional neural network for digital images [J]. Plant Phenomics, 2020: 6323965. [19] 赵春江, 文朝武, 林森, 等. 基于级联卷积神经网络的番茄花期识别检测方法[J]. 农业工程学报, 2020, 36(24): 143-152. Zhao Chunjiang, Wen Chaowu, Lin Sen, et al. Tomato florescence recognition and detection method based on cascaded neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 143-152. [20] 成伟, 张文爱, 冯青春, 等. 基于改进YOLOv3的温室番茄果实识别估产方法 [J]. 中国农机化学报, 2021, 42(4): 176-182. Cheng Wei, Zhang Wenai, Feng Qingchun, et al. Method of greenhouse tomato fruit identification and yield estimation based on improved YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 176-182. [21] Feng Quanlong, Yang Jianyu, Liu Yiming, et al. Multi‑temporal unmanned aerial vehicle remote sensing for vegetable mapping using an attention:Based recurrent convolutional neural network [J]. Remote Sensing, 2020, 12(10), 1668. [22] Sivakumar A N V, Li J T, Scott S, et al. Comparison of object detection and patch‑based classification deep learning models on Mid‑to Late‑Season weed detection in UAV imagery [J]. Remote Sensing, 2020, 12(13): 2136. [23] Bishwa B S, Hu Chengsong, Muthukumar V B. Evaluating cross‑applicability of weed detection models across different crops in similar production environments [J]. Frontiers in Plant Science, 2022, 13: 837726. [24] Safonova A, Guirado E, Maglinets Y, et al. Olive tree biovolume from uav multi‑resolution image segmentation with mask R-CNN [J]. Sensors, 2021, 21(5): 1617. [25] Trevisan R, Perez O, Schmitz N, et al. High‑throughput phenotyping of soybean maturity using time series UAV imagery and convolutional neural networks [J]. Remote Sensing, 2020, 12(21): 3617. [26] Psiroukis V, Espejo‑Garcia B, Chitos A, et al. Assessment of different object detectors for the maturity level classification of broccoli crops using UAV imagery [J]. Remote Sensing, 2022, 14(3): 731. [27] Moazzam S I, Khan U S, Qureshi W S, et al. A patch‑image based classification approach for detection of weeds in sugar beet crop [J]. IEEE Access, 2021, 9: 121698-121715. [28] Oliveira G S, Junior J M, Polidoro C, et al. Convolutional neural networks to estimate dry matter yield in a guineagrass breeding program using UAV remote sensing [J]. Sensors, 2021, 21(12): 3971. [29] Briechle S, Krzystek P, Vosselman, G. SilviNet A dual‑CNN approach for combined classification of tree species and standing dead trees from remote sensing data [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 98: 102292. [30] Wang Lingyue, Liu Meiling, Liu Xiangnan, et al. Pretrained convolutional neural network for classifying rice‑cropping systems based on spatial and spectral trajectories of Sentinel-2 time series [J]. Journal of Applied Remote Sensing, 2020, 14(1): 14506. [31] Li Zhengtao, Chen Guokun, Zhang Tianxu. A CNN‑transformer hybrid approach for crop classification using multitemporal multisensor images [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 847-858. [32] Wang Shouyi, Xu Zhigang, Zhang Chengming, et al. Improved winter wheat spatial distribution extraction using a convolutional neural network and partly connected conditional random field [J]. Remote Sensing, 2020, 12(5): 821. [33] Yang Shuting, Gu Lingjia, Li Xiaofeng, et al. Crop classification method based on optimal feature selection and hybrid CNN-RF networks for multi‑temporal remote sensing imagery [J]. Remote Sensing, 2020, 12(19): 3119. [34] Ji Shunping, Zhang Zhili, Zhang Chi, et al. Learning discriminative spatiotemporal features for precise crop classification from multi‑temporal satellite images [J]. International Journal of Remote Sensing, 2020, 41(8): 3162-3174. [35] Bhupendra, Kriz M, Ankur M, et al. Deep CNN‑based damage classification of milled rice grains using a high‑magnification image dataset [J]. Computers and Electronics in Agriculture, 2022, 195: 106811. [36] Li Hao, Zhang Liu, Sun Heng, et al. Discrimination of unsound wheat kernels based on deep convolutional generative adversarial network and near‑infrared hyperspectral imaging technology [J]. Spectrochimica Acta Part A‑molecular and Biomolecular Spectroscopy, 2022, 268: 120722. [37] Han Yifei, Liu Zhaojing, Kourosh K, et al. Quality estimation of nuts using deep learning classification of hyperspectral imagery [J]. Computers and Electronics in Agriculture, 2021, 180: 105868. [38] Jin Baichuan, Zhang Chu, Jia Liangquan, et al. Identification of rice seed varieties based on near‑infrared hyperspectral imaging technology combined with deep learning [J]. ACS Omega, 2022. [39] Singh T, Garg N M, Iyengar S R S. Nondestructive identification of barley seeds variety using near‑infrared hyperspectral imaging coupled with convolutional neural network [J]. Journal of Food Process Engineering, 2021, 44(10): 13821. [40] Unlersen M F, Sonmez M E, Aslan M F, et al. CNN‑SVM hybrid model for varietal classification of wheat based on bulk samples [J]. European Food Research and Technology, 2022, 248(8): 2043-2052. [41] Jahanbakhshi A, Momeny M, Mahmoudi M, et al. Classification of sour lemons based on apparent defects using stochastic pooling mechanism in deep convolutional neural networks [J]. Scientia Horticulturae, 2020, 263: 109133. [42] Hsieh K W, Huang B Y, Hsiao K Z, et al. Fruit maturity and location identification of beef tomato using R‑CNN and binocular imaging technology [J]. Journal of Food Measurement and Characterization, 2021, 15(6): 5170-5180. [43] 翟长远, 付豪, 郑康, 等. 基于深度学习的大田甘蓝在线识别模型建立与试验[J]. 农业机械学报,2022, 53(4): 293-303. Zhai Changyuan, Fu Hao, Zheng Kang, et al. Establishment and experimental verification of deep learning model for on‑line recognition of field cabbage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 293-303. [44] Wang Zhipeng, Jin Luoyi, Wang Shuai, et al. Apple stem/calyx real‑time recognition using YOLO‑v5 algorithm for fruit automatic loading system [J]. Postharvest Biology and Technology, 2022, 185: 111808. [45] Xi R, Hou J, Lou W. Potato bud detection with improved Faster R-CNN[J]. Transactions of the ASABE, 2020, 63(3): 557-569. [46] Xie Weijun, Wei Shuo, Zheng Zhaohui, et al. A CNN‑based lightweight ensemble model for detecting defective carrots [J]. Biosystems Engineering, 2021, 1208: 287-299. [47] Jayakumari R, Nidamanuri R R, Ramiya A M. Object‑level classification of vegetable crops in 3D LiDAR point cloud using deep learning convolutional neural networks [J]. Precision Agriculture, 2021, 22(5): 1617-1633. [48] Tian Li, Wang Chun, Li Hailiang, et al. Recognition method of corn and rice crop growth state based on computer image processing technology [J]. Journal of Food Quality, 2022, 2844757. [49] Wang Shanshan, Zhang Wenyi, Wang Xingsong, et al. Recognition of rice seedling rows based on row vector grid classification [J]. Computers and Electronics in Agriculture, 2021, 190: 106454. [50] Rahim U F, Utsumi T, Mineno H. Deep learning‑based accurate grapevine inflorescence and flower quantification in unstructured vineyard images acquired using a mobile sensing platform [J]. Computers and Electronics in Agriculture, 2022, 198. [51] Blok P M, Evert F K, Tielen A P M, et al. The effect of data augmentation and network simplification on the image:Based detection of broccoli heads with Mask R-CNN [J]. Journal of Field Robotics, 2021, 38(1): 85-104. [52] Vayssade J A, Jones G, Gee C, et al. Pixelwise instance segmentation of leaves in dense foliage [J]. Computers and Electronics in Agriculture, 2022, 195. [53] Massah J, Vakilian K Asefpour, Shabanian M, et al. Design, development, and performance evaluation of a robot for yield estimation of kiwifruit [J]. Computers and Electronics in Agriculture, 2021, 185: 106132. [54] 王辉, 韩娜娜, 吕程序, 等. 基于Mask R-CNN的单株柑橘树冠识别与分割[J]. 农业机械学报, 2021, 52(5): 169-174. Wang Hui, Han Nana, Lü Chengxu, et al. Recognition and segmentation of individual citrus tree crown based on mask R-CNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 169-174. [55] Lin P, Lee W S, Chen Y M, et al. A deep‑level region‑based visual representation architecture for detecting strawberry flowers in an outdoor field [J]. Precision Agriculture, 2020, 21(2): 387-402. [56] Fu Longsheng, Majeed Y, Zhang Xin, et al. Faster R-CNN‑based apple detection in dense‑foliage fruiting‑wall trees using RGB and depth features for robotic harvesting [J]. Biosystems Engineering, 2020, 197: 245-256. [57] Su D, Kong H, Qiao Y L, et al. Data augmentation for deep learning based semantic segmentation and crop‑weed classification in agricultural robotics [J]. Computers and Electronics in Agriculture, 2021, 190: 106418. [58] Kartal S, Choudhary S, Masner J, et al. Machine learning‑based plant detection algorithms to automate counting tasks using 3D canopy scans [J]. Sensors, 2021, 21(23). [59] Potena C, Nardi D, Pretto A. Fast and accurate crop and weed identification with summarized train sets for precision agriculture [J]. Cham: Springer International Publishing, 2017: 105-121. [60] Li Can, Lin Jiaquan, Li Boyang, et al. Partition harvesting of a column‑comb litchi harvester based on 3D clustering [J]. Computers and Electronics in Agricultur, 2022, 197: 106975. [61] 刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237. Liu Fang, Liu Yukun, Lin Sen, et al. Fast Recognition method for tomatoes under complex environments based on improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 229-237. [62] Gene‑Mola J, Sanz‑Cortiella R, Rosell‑Polo J R, et al. Fruit detection and 3D location using instance segmentation neural networks and structure‑from‑motion photogrammetry [J]. Computers and Electronics in Agriculture, 2020, 169:105165. |
[1] | 陈雨欣, 刘章鑫, 刘欣谊, 刘涛, 孙成明, . 基于机器学习算法的扬州市冬小麦遥感分类提取[J]. 中国农机化学报, 2024, 45(8): 154-161. |
[2] | 潘健, 祁雁楠, 陈鲁威, 夏烨, 吕晓兰, . 基于可见/近红外高光谱成像技术的梨树叶部病害识别研究[J]. 中国农机化学报, 2024, 45(8): 162-169. |
[3] | 唐可记, 孙文磊, 杨炀, 孔德龙. 玉米收获机发动机服役状态趋势分析与预警[J]. 中国农机化学报, 2024, 45(7): 160-165. |
[4] | 黄亦其, 鹿林飞, 沈豪, 王福宽, 乔曦, . 基于卷积神经网络的入侵昆虫识别研究[J]. 中国农机化学报, 2024, 45(7): 222-227. |
[5] | 郭宏杰, 马睿, 王佳, 赵威, 马德新. 基于卷积神经网络的苹果叶部病害图像识别研究[J]. 中国农机化学报, 2024, 45(5): 239-245. |
[6] | 林燕翔, 沈印, 李光林. 基于改进InceptionV3算法的小麦杂质识别研究[J]. 中国农机化学报, 2024, 45(4): 108-116. |
[7] | 马志艳, , 李辉, 杨光友, . 基于YOLOv3算法的智能采茶机关键技术研究[J]. 中国农机化学报, 2024, 45(4): 199-204. |
[8] | 张慧蒙, 何超, 徐嘉雯, 罗鑫, 荣剑, 刘学渊. 基于SCGYOLOv5n的收获期澳洲坚果检测算法[J]. 中国农机化学报, 2024, 45(4): 214-221. |
[9] | 纪元浩, 许金普, 严蓓蓓, 薛俊龙. 基于改进ResNet50模型的咖啡生豆质量和缺陷检测方法[J]. 中国农机化学报, 2024, 45(4): 237-243. |
[10] | 陈鲁威, , 曾锦, , 袁全春, , 潘健, , 姚凤腾, , 吕晓兰, . 无人机遥感监测果树氮素含量研究进展[J]. 中国农机化学报, 2024, 45(2): 235-243. |
[11] | 梁万杰, 曹静, 孙传亮, 曹宏鑫, 张文宇, . 基于深度学习的农作物病害识别系统研发[J]. 中国农机化学报, 2023, 44(9): 169-175. |
[12] | 杨波, 何金平, 张立娜. 基于改进SPP-x的YOLOv5神经网络水稻叶片病害识别检测[J]. 中国农机化学报, 2023, 44(9): 190-197. |
[13] | 汪健, 梁兴建, 雷刚. 基于深度残差网络与迁移学习的水稻病虫害图像识别[J]. 中国农机化学报, 2023, 44(9): 198-204. |
[14] | 李宗南, 蒋怡, 王思, 李源洪, 黄平, 魏鹏. 基于YOLOv5模型的飞蓬属入侵植物目标检测[J]. 中国农机化学报, 2023, 44(7): 200-206. |
[15] | 王春桃, , , , 梁炜健, 郭庆文, 钟浩, 甘雨, 肖德琴, , . 农业害虫智能视觉检测研究综述[J]. 中国农机化学报, 2023, 44(7): 207-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296