[ 1 ] 张永芳, 王芳. 基于SSA-RBF网络的日光温室温湿度预测模型研究[J]. 河北农业大学学报, 2021, 44(3): 115-121.
Zhang Yongfang, Wang Fang. Study on temperature and humidity prediction model of solar greenhouse based on SSA-RBF network [J]. Journal of Hebei Agricultural University, 2021, 44(3): 115-121.
[ 2 ] 毛晓娟, 鲍彤, 荀广连, 等. 基于GWO-LSTM的设施蔬菜温室温度预测[J]. 中国农机化学报, 2023, 44(1): 116-123.
Mao Xiaojuan, Bao Tong, Xun Guanglian, et al. Prediction of temperature in the greenhouse of vegetable growing based on GWO-LSTM [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 116-123.
[ 3 ] Carotti L, Graamans L, Puksic F, et al. Plant factories are heating up: Hunting for the best combination of light intensity, air temperature and root‑zone temperature in lettuce production [J]. Frontiers in Plant Science, 2021, 11: 592171.
[ 4 ] 何芬, 丁小明, 司长青. 温室作物根区温度调控技术现状和发展趋势[J]. 农业工程技术, 2022, 42(31): 12-16.
[ 5 ] 张建超, 单慧勇, 景向阳, 等. 基于Elman神经网络的温室环境因子预测方法[J]. 中国农机化学报, 2021, 42(8): 203-208.
Zhang Jianchao, Shan Huiyong, Jing Xiangyang, et al. Prediction method of greenhouse environmental factors based on Elman neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 203-208.
[ 6 ] Jung D H, Kim H S, Jhin C, et al. Time‑serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse [J]. Computers and Electronics in Agriculture, 2020, 173: 105402.
[ 7 ] Tsai Y Z, Hsu K S, Wu H Y, et al. Application of random forest and ICON models combined with weather forecasts to predict soil temperature and water content in a greenhouse [J]. Water, 2020, 12(4): 1176.
[ 8 ] Fan L, Ji Y, Wu G. Research on temperature prediction model in greenhouse based on improved SVR [C]. Journal of Physics: Conference Series. IOP Publishing, 2021, 1802(4): 042001.
[ 9 ] 陈昕, 唐湘璐, 李想, 等. 二次聚类与神经网络结合的日光温室温度二步预测方法[J]. 农业机械学报, 2017, 48(S1): 353-358.
Chen Xin, Tang Xianglu, Li Xiang, et al. Two‑steps prediction method of temperature in solar greenhouse based on twice cluster analysis and neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 353-358.
[10] 任守纲, 刘鑫, 顾兴健,等. 基于R-BP神经网络的温室小气候多步滚动预测模型[J]. 中国农业气象, 2018, 39(5): 314-324.
Ren Shougang, Liu Xin, Gu Xinjian, et al. Multi‑step rolling prediction model of greenhouse microclimate based on R-BP neural network [J]. Chinese Agrometeorology, 2018, 39(5): 314-324.
[11] Pi E, Mantri N, Ngai S M, et al. BP-ANN for fitting the temperature‑germination model and its application in predicting sowing time and region for Bermudagrass [J]. Plos One, 2013, 8(12): e82413.
[12] 王传旭, 王康, 陈林, 等. 基于Kriging插值和BP神经网络结合的粮仓温度场预测模型研究及实现[J]. 中国农业科技导报, 2021, 23(9): 96-102.
Wang Chuanxu, Wang Kang, Chen Lin, et al. Research and realization of granary temperature field prediction model based on Kriging interpolation and BP neural network [J]. China Agricultural Science and Technology Review, 2021, 23(9): 96-102.
[13] 程嘉蔚, 徐佳, 王艺玲, 等. 基于BP神经网络的仓内稻谷温度预测模型[J]. 现代电子技术, 2021, 44(19): 178-182.
Cheng Jiawei, Xu Jia, Wang Yiling, et al. Granary rice temperature prediction model based on BP neural network [J]. Modern Electronics Technique, 2021, 44(19): 178-182.
[14] 贺琦琦, 郭向红, 雷涛, 等. 基于改进的BP神经网络对蓄水坑灌冬季果园土壤温度预测[J]. 节水灌溉, 2019(7): 16-20.
He Qiqi, Guo Xianghong, Lei Tao, et al. Prediction of winter soil temperature of apple orchard under water storage pit irrigation based on improved BP neural networks [J]. Water Saving irrigation, 2019(7): 16-20.
[15] 何芬, 马承伟. 遗传算法优化人工神经网络模型在日光温室湿度预报中的应用[J]. 中国农学通报, 2008(1): 492-495.
He Fen, Ma Chengwei. Application of BP neural network based on genetic algorithm in predicting the air humidity of sunlight greenhouse [J]. Chinese Agricultural Science Bulletin, 2018(1): 492-495.
[16] 郭利进, 乔志忠. 基于遗传算法优化BP神经网络的粮食温度预测研究[J]. 粮食与油脂, 2023, 36(1): 34-37, 51.
Guo Lijin, Qiao Zhizhong. Study on grain temperature prediction based on genetic algorithm optimized BP neural network [J]. Grain and Fat, 2023, 36(1): 34-37, 51.
[17] 梁琪尧. 基于GA-BP神经网络的香菇产量预测方法研究[D]. 泰安: 山东农业大学, 2022.
Liang Qiyao. Research on shiitake yield prediction method based on GA-BP neural network [D]. Tai'an: Shandong Agricultural University, 2022.
[18] Khairunniza‑Bejo S, Mustaffha S, Ismail W I W. Application of artificial neural network in predicting crop yield: A review [J]. Journal of Food Science and Engineering, 2014, 4(1): 27-33.
(上接第 188 页)
[20] 宋伟先. 基于深度学习的猪只目标检测及状态分析[D]. 哈尔滨: 东北农业大学, 2019.
[21] Sumit S S, Watada J, Roy A, et al. In object detection deep learning methods, YOLO shows supremum to Mask R-CNN [J]. Journal of Physics Conference Series, 2020, 1529(4): 042086.
[22] Brown J, QiaoY,Clark C, et al. Automated aerial animal detection when spatial resolution conditions are varied [J]. Computers and Electronics in Agriculture, 2021, 193:106689.
[23] Liu M S, Gao J Q, Hu G, et al. Monkeytrail: A scalable video‑based method for tracking macaque movement trajectory in daily living cages [J]. Zoological Research, 2021, 43(3): 343-351.
[24] 刘元峰, 姬海军, 刘立波. 基于YOLOv5s的高速公路车辆实时检测模型[J]. 液晶与显示, 2022, 37(9): 1228-1241.
Liu Yuanfeng, Ji Haijun, Liu Libo. Real-time detection model of highway vehicle based on YOLOv5s [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(9): 1228-1241.
[25] Wang Q, Cheng M, Huang S, et al. A deep learning approach incorporating YOLOv5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings [J]. Computers and Electronics in Agriculture, 2022, 199: 107194.
[26] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [J]. European Conference on Computer Vision, 2018: 3-19.
[27] Evangelidis G D, Psarakis E Z. Parametric image alignment using enhanced correlation coefficient maximization [J]. IEEE transactions on pattern analysis and machine intelligence, 2008, 30(10): 1858-1865.
[28] Luo H, Jiang W, Gu Y, et al. A strong baseline and batch normalization neck for deep person re-identification [J]. IEEE Transactions on Multimedia, 2019, 22(10): 2597-2609.
[29] Ristani E, Solera F, Zou R, et al. Performance measures and a data set for multiple object, multi-camera tracking [C]. USA: IEEE, 2016.
|