[ 1 ] 郑太雄, 江明哲, 冯明驰. 基于视觉的采摘机器人目标识别与定位方法研究综述[J]. 仪器仪表学报, 2021, 42(9): 28-51.
Zheng Taixiong, Jiang Mingzhe, Feng Mingchi. Vision based target recognition and location for picking robot: A review [J]. Chinese Journal of Scientific Instrument, 2021, 42(9): 28-51.
[ 2 ] Jia W, Zhang Y, Lian J, et al. Apple harvesting robot under information technology: A review [J]. International Journal of Advanced Robotic Systems, 2020, 17(3): 1729881420925310.
[ 3 ] Kang H W, Chen C, Zhou H Y, et al. Fruit detection and segmentation for apple harvesting using visual sensor in orchards [J]. Sensors (Basel), 2019, 19(20): 194599.
[ 4 ] 毕金峰, 吕健, 刘璇, 等. 国内外桃加工科技与产业现状及展望[J]. 食品科学技术学报, 2019, 37(5): 7-15.
[ 5 ] 赵琛, 王昱潭, 朱超伟. 基于几何特征的灵武长枣图像分割算法[J]. 计算机工程与应用, 2019, 55(15): 204-212.
Zhao Chen, Wang Yutan, Zhu Chaowei. Lingwu Long Jujubes image segmentation algorithm based on geometric features [J]. Computer Engineering and Applications, 2019, 55(15): 204-212.
[ 6 ] 廖崴, 郑立华, 李民赞, 等. 基于随机森林算法的自然光照条件下绿色苹果识别[J]. 农业机械学报, 2017, 48(S1): 86-91.
Liao Wei, Zheng Lihua, Li Minzan, et al. Green apple recognition in natural illumination based on random forest algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 86-91.
[ 7 ] 麦春艳, 郑立华, 肖昌一, 等. 自然光照条件下苹果识别方法对比研究[J]. 中国农业大学学报, 2016, 21(11): 43-50.
Mai Chunyan, Zheng Lihua, Xiao Changyi, et al. Comparison of apple recognition methods under natural light [J]. Journal of China Agricultural University, 2016, 21(11): 43-50.
[ 8 ] 贾伟宽, 赵德安, 刘晓洋, 等. 机器人采摘苹果果实的K-means和GA-RBF-LMS神经网络识别[J]. 农业工程学报, 2015, 31(18): 175-183.
Jia Weikuan, Zhao De'an, Liu Xiaoyang, et al. Apple recognition based on K-means and GA-RBF-LMS neural network applicated in harvesting robot [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(18): 175-183.
[ 9 ] 王津京, 赵德安, 姬伟, 等. 采摘机器人基于支持向量机苹果识别方法[J]. 农业机械学报, 2009, 40(1): 148-151, 147.
Wang Jinjing, Zhao De'an, Ji Wei, et al. Apple fruit recognition based on support vector machine using in harvesting robot [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(1): 148-151, 147.
[10] 马本学, 贾艳婷, 梅卫江, 等. 不同自然场景下葡萄果实识别方法研究[J]. 现代食品科技, 2015, 31(9): 145-149.
[11] 崔永杰, 苏帅, 王霞霞, 等. 基于机器视觉的自然环境中猕猴桃识别与特征提取[J]. 农业机械学报, 2013, 44(5): 247-252.
Cui Yongjie, Su Shuai, Wang Xiaxia, et al. Recognition and feature extraction of kiwifruit in natural environment based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 247-252.
[12] 熊俊涛, 郑镇辉, 梁嘉恩, 等. 基于改进YOLOv3网络的夜间环境柑橘识别方法[J]. 农业机械学报, 2020, 51(4): 199-206.
Xiong Juntao, Zheng Zhenhui, Liang Jiaen, et al. Citrus detection method in night environment based on improved YOLOv3 network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 199-206.
[13] Girshick R. Fast R-CNN [C] .Proceedings of the IEEE International Conference on Computer Vision. 2015: 1440-1448.
[14] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified, real‑time object detection [C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[15] Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model [J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
[16] Li R, Wu Y. Improved YOLOv5 wheat ear detection algorithm based on attention mechanism [J]. Electronics, 2022, 11(11): 1673.
[17] 王卓, 王健, 王枭雄, 等. 基于改进YOLOv4的自然环境苹果轻量级识别方法[J]. 农业机械学报, 2022, 53(8): 294-302.
Wang Zhuo, Wang Jian, Wang Xiaoxiong, et al. Lightweight real‑time apple detection method based on improved YOLOv4 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 294-302.
[18] Fu L, Feng Y, Wu J, et al. Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model [J]. Precision Agriculture, 2021, 22(3): 754-776.
[19] 刘磊, 刘恩林, 王春森, 等. 一种全动可避障蜜桃采摘机的设计[J].农机使用与维修, 2017(10): 18-19.
[20] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection [J]. arxiv preprint arxiv: 2004.10934, 2020.
[21] Syazwany N S, Nam J H, Lee S C. MM-BiFPN: Multi‑modality fusion network with Bi-FPN for MRI brain tumor segmentation [J]. IEEE Access, 2021, 9: 160708-160720.
[22] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[23] Zhang Y, Kong J, Qi M, et al. Object detection based on multiple information fusion net [J]. Applied Sciences, 2020, 10(1): 418.
[24] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[25] Lin T, Dollar P, Girshick R, et al. Feature pyramid networks for object detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, USA, 2017: 936-944.
[26] Molchanov P, Tyree S, Karras T, et al. Pruning convolutional neural networks for resource efficient inference [J]. arxiv preprint arxiv: 1611. 06440, 2016.
[27] 张兆国, 张振东, 李加念, 等. 采用改进YoloV4模型检测复杂环境下马铃薯[J]. 农业工程学报, 2021, 37(22): 170-178.
Zhang Zhaoguo, Zhang Zhendong, Li Jianian, et al. Potato detection in complex environment based on improved YoloV4 model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 170-178.
|