[ 1 ] Walter T, Couzin I D. TRex, a fast multi‑animal tracking system with markerless identification, and 2D estimation of posture and visual fields [J]. Elife, 2021: 1-72.
[ 2 ] 金宇. 拥挤场景下的人体姿态估计与跟踪[D]. 天津: 河北工业大学, 2020.
Jin Yu. Human pose estimation and tracking in crowded scene [D]. Tianjin: Hebei University of Technology, 2020.
[ 3 ] 荣佩佩. 视频监控中运动目标的检测、跟踪与动作识别算法的研究[D]. 保定: 河北大学, 2016.
[ 4 ] 涂淑琴, 刘晓龙, 梁云, 等. 基于改进DeepSORT的群养生猪行为识别与跟踪方法[J]. 农业机械学报, 2022, 53(8): 345-352.
Tu Shuqin, Liu Xiaolong, Liang Yun, et al. Behavior recognition and tracking method of group‑housed pigs based on improved DeepSORT algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 345-352.
[ 5 ] Hassan-Vásquez J A, Maroto⁃Molina F, Guerrero⁃Ginel J E. GPS tracking to monitor the spatiotemporal dynamics of cattle behavior and their relationship with feces distribution [J]. Animals, 2022, 12(18): 2383-2404.
[ 6 ] Barnes A L, Wickham S L, Admiraal R, et al. Characterization of inappetent sheep in a feedlot using radio⁃tracking technology [J]. Journal of Animal Science, 2018, 96(3): 902-911.
[ 7 ] 骆焦煌, 宋长龙. 基于改进 CNN 算法的视觉图像目标跟踪研究[J]. 吉林大学学报(信息科学版), 2023, 41(1): 165-173.
Luo Jiaohuang, Song Changlong. Research on visual image target tracking based on improved convolution neural network algorithm [J]. Journal of Jilin University (Information Science Edition), 2023, 41(1): 165-173.
[ 8 ] 孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45(7): 1244-1260.
Meng Lu, Yang Xu. A survey of object tracking algorithms [J]. Acta Automatica Sinica, 2019, 45(7): 1244-1260.
[ 9 ] 黄智慧, 詹瑾, 赵慧民, 等. 基于深度学习的视觉目标跟踪算法浅析[J]. 广东技术师范学院学报, 2019, 40(3): 28-36.
Huang Zhihui, Zhan Jin, Zhao Huimin, et al. Analysis of object tracking algorithms based on deep learning technologies [J]. Journal of Guangdong Polytechnic Normal Univercity, 2019, 40(3): 28-36.
[10] Kashiha M, Bahr C, Ott S, et al. Automatic identification of marked pigs in a pen using image pattern recognition [J]. Computers and Electronics in Agriculture, 2013, 93: 111-120.
[11] 康熙, 张旭东, 刘刚, 等. 基于机器视觉的跛行奶牛牛蹄定位方法[J]. 农业机械学报, 2019, 50(S1): 276-282.
Kang Xi, Zhang Xudong, Liu Gang, et al. Hoof location method of lame dairy cows based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 276-282.
[12] Bewley A, Ge Z, Ott L, et al. Simple online and realtime tracking [C]. USA: IEEE, 2016.
[13] Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric [C]. USA: IEEE, 2017.
[14] Du Y, Zhao Z, Song Y, et al. StrongSORT: Make DeepSORT great again [J]. IEEE Transactions on Multimedia, 2023: 13514-13532.
[15] Emami P, Pardalos P M, Elefteriadou L, et al. Machine learning methods for data association in multi‑object tracking [J]. ACM Computing. Surveys, 2020, 53(4): 1-33.
[16] 李琦, 尚绛岚, 李宝山. 基于 YOLOv3 和 DeepSORT 的草原牛跟踪系统[J]. 传感器与微系统, 2021, 40(6): 83-85, 88.
Li Qi, Shang Jianglan, Li Baoshan. Grassland cattle tracking system based on YOLOv3 and DeepSORT [J]. Transducer and Microsystem Technologies, 2021, 40(6): 83-85, 88.
[17] 张宏鸣, 汪润, 董佩杰, 等. 基于DeepSORT算法的肉牛多目标跟踪方法[J]. 农业机械学报, 2021, 52(4): 248-256.
Zhang Hongming, Wang Run, Dong Peijie, et al. Beef cattle multi-target tracking based on DeepSORT algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 248-256.
[18] Cheng M, Yuan H, Wang Q, et al. Application of deep learning in sheep behaviors recognition and influence analysis of training data characteristics training data characteristics on the recognition effect [J]. Computers and Electronics in Agriculture, 2022, 198: 107010.
[19] 杨国欣. 基于Adaboost算法和视觉显著性的羊只目标检测与计数方法研究[D]. 咸阳: 西北农林科技大学, 2019.
|